Source code for ultraplot.axes.plot

#!/usr/bin/env python3
"""
The second-level axes subclass used for all ultraplot figures.
Implements plotting method overrides.
"""
import contextlib
import inspect
import itertools
import re
import sys
from collections.abc import Callable, Iterable
from numbers import Integral, Number
from typing import Any, Iterable, Optional, Union

import matplotlib as mpl
import matplotlib.artist as martist
import matplotlib.axes as maxes
import matplotlib.cbook as cbook
import matplotlib.cm as mcm
import matplotlib.collections as mcollections
import matplotlib.colors as mcolors
import matplotlib.container as mcontainer
import matplotlib.contour as mcontour
import matplotlib.image as mimage
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.pyplot as mplt
import matplotlib.ticker as mticker
import numpy as np
import numpy.ma as ma
from packaging import version

from .. import colors as pcolors
from .. import constructor, utils
from ..config import rc
from ..internals import (
    _get_aliases,
    _not_none,
    _pop_kwargs,
    _pop_params,
    _pop_props,
    _version_mpl,
    context,
    docstring,
    guides,
    ic,  # noqa: F401
    inputs,
    warnings,
)
from ..utils import units
from . import base

try:
    from cartopy.crs import PlateCarree
except ModuleNotFoundError:
    PlateCarree = object

__all__ = ["PlotAxes"]


# Constants
# NOTE: Increased from native linewidth of 0.25 matplotlib uses for grid box edges.
# This is half of rc['patch.linewidth'] of 0.6. Half seems like a nice default.
EDGEWIDTH = 0.3

# Data argument docstrings
_args_1d_docstring = """
*args : {y} or {x}, {y}
    The data passed as positional or keyword arguments. Interpreted as follows:

    * If only `{y}` coordinates are passed, try to infer the `{x}` coordinates
      from the `~pandas.Series` or :class:`~pandas.DataFrame` indices or the
      :class:`~xarray.DataArray` coordinates. Otherwise, the `{x}` coordinates
      are ``np.arange(0, {y}.shape[0])``.
    * If the `{y}` coordinates are a 2D array, plot each column of data in succession
      (except where each column of data represents a statistical distribution, as with
      ``boxplot``, ``violinplot``, or when using ``means=True`` or ``medians=True``).
    * If any arguments are `pint.Quantity`, auto-add the pint unit registry
      to matplotlib's unit registry using `~pint.UnitRegistry.setup_matplotlib`.
      A `pint.Quantity` embedded in an `xarray.DataArray` is also supported.
"""
_args_1d_multi_docstring = """
*args : {y}2 or {x}, {y}2, or {x}, {y}1, {y}2
    The data passed as positional or keyword arguments. Interpreted as follows:

    * If only `{y}` coordinates are passed, try to infer the `{x}` coordinates from
      the `~pandas.Series` or :class:`~pandas.DataFrame` indices or the :class:`~xarray.DataArray`
      coordinates. Otherwise, the `{x}` coordinates are ``np.arange(0, {y}2.shape[0])``.
    * If only `{x}` and `{y}2` coordinates are passed, set the `{y}1` coordinates
      to zero. This draws elements originating from the zero line.
    * If both `{y}1` and `{y}2` are provided, draw elements between these points. If
      either are 2D, draw elements by iterating over each column.
    * If any arguments are `pint.Quantity`, auto-add the pint unit registry
      to matplotlib's unit registry using `~pint.UnitRegistry.setup_matplotlib`.
      A `pint.Quantity` embedded in an `xarray.DataArray` is also supported.
"""
_args_2d_docstring = """
*args : {z} or x, y, {z}
    The data passed as positional or keyword arguments. Interpreted as follows:

    * If only {zvar} coordinates are passed, try to infer the `x` and `y` coordinates
      from the :class:`~pandas.DataFrame` indices and columns or the :class:`~xarray.DataArray`
      coordinates. Otherwise, the `y` coordinates are ``np.arange(0, y.shape[0])``
      and the `x` coordinates are ``np.arange(0, y.shape[1])``.
    * For ``pcolor`` and ``pcolormesh``, calculate coordinate *edges* using
      `~ultraplot.utils.edges` or `:func:`~ultraplot.utils.edges2d`` if *centers* were provided.
      For all other methods, calculate coordinate *centers* if *edges* were provided.
    * If the `x` or `y` coordinates are `pint.Quantity`, auto-add the pint unit registry
      to matplotlib's unit registry using `~pint.UnitRegistry.setup_matplotlib`. If the
      {zvar} coordinates are `pint.Quantity`, pass the magnitude to the plotting
      command. A `pint.Quantity` embedded in an `xarray.DataArray` is also supported.
"""
docstring._snippet_manager["plot.args_1d_y"] = _args_1d_docstring.format(x="x", y="y")
docstring._snippet_manager["plot.args_1d_x"] = _args_1d_docstring.format(x="y", y="x")
docstring._snippet_manager["plot.args_1d_multiy"] = _args_1d_multi_docstring.format(
    x="x", y="y"
)  # noqa: E501
docstring._snippet_manager["plot.args_1d_multix"] = _args_1d_multi_docstring.format(
    x="y", y="x"
)  # noqa: E501
docstring._snippet_manager["plot.args_2d"] = _args_2d_docstring.format(
    z="z", zvar="`z`"
)  # noqa: E501
docstring._snippet_manager["plot.args_2d_flow"] = _args_2d_docstring.format(
    z="u, v", zvar="`u` and `v`"
)  # noqa: E501


# Shared docstrings
_args_1d_shared_docstring = """
data : dict-like, optional
    A dict-like dataset container (e.g., :class:`~pandas.DataFrame` or
    `~xarray.Dataset`). If passed, each data argument can optionally
    be a string `key` and the arrays used for plotting are retrieved
    with ``data[key]``. This is a `native matplotlib feature
    <https://matplotlib.org/stable/gallery/misc/keyword_plotting.html>`__.
autoformat : bool, default: :rc:`autoformat`
    Whether the `x` axis labels, `y` axis labels, axis formatters, axes titles,
    legend titles, and colorbar labels are automatically configured when a
    `~pandas.Series`, :class:`~pandas.DataFrame`, :class:`~xarray.DataArray`, or `~pint.Quantity`
    is passed to the plotting command. Formatting of `pint.Quantity`
    unit strings is controlled by :rc:`unitformat`.
"""
_args_2d_shared_docstring = """
%(plot.args_1d_shared)s
transpose : bool, default: False
    Whether to transpose the input data. This should be used when
    passing datasets with column-major dimension order ``(x, y)``.
    Otherwise row-major dimension order ``(y, x)`` is expected.
order : {'C', 'F'}, default: 'C'
    Alternative to `transpose`. ``'C'`` corresponds to the default C-cyle
    row-major ordering (equivalent to ``transpose=False``). ``'F'`` corresponds
    to Fortran-style column-major ordering (equivalent to ``transpose=True``).
globe : bool, default: False
    For `ultraplot.axes.GeoAxes` only. Whether to enforce global
    coverage. When set to ``True`` this does the following:

    #. Interpolates input data to the North and South poles by setting the data
       values at the poles to the mean from latitudes nearest each pole.
    #. Makes meridional coverage "circular", i.e. the last longitude coordinate
       equals the first longitude coordinate plus 360\N{DEGREE SIGN}.
    #. When basemap is the backend, cycles 1D longitude vectors to fit within
       the map edges. For example, if the central longitude is 90\N{DEGREE SIGN},
       the data is shifted so that it spans -90\N{DEGREE SIGN} to 270\N{DEGREE SIGN}.
"""
docstring._snippet_manager["plot.args_1d_shared"] = _args_1d_shared_docstring
docstring._snippet_manager["plot.args_2d_shared"] = _args_2d_shared_docstring

_curved_quiver_docstring = """
Draws curved vector field arrows (streamlines with arrows) for 2D vector fields.

Parameters
----------
x, y : 1D or 2D arrays
    Grid coordinates.
u, v : 2D arrays
    Vector components.
color : color or 2D array, optional
    Streamline color.
density : float or (float, float), optional
    Controls the closeness of streamlines.
grains : int or (int, int), optional
    Number of seed points in x and y.
linewidth : float or 2D array, optional
    Width of streamlines.
cmap, norm : optional
    Colormap and normalization for array colors.
arrowsize : float, optional
    Arrow size scaling.
arrowstyle : str, optional
    Arrow style specification.
transform : optional
    Matplotlib transform.
zorder : float, optional
    Z-order for lines/arrows.
start_points : (N, 2) array, optional
    Starting points for streamlines.

Returns
-------
CurvedQuiverSet
    Container with attributes:
    - lines: LineCollection of streamlines
    - arrows: PatchCollection of arrows
"""

docstring._snippet_manager["plot.curved_quiver"] = _curved_quiver_docstring
# Auto colorbar and legend docstring
_guide_docstring = """
colorbar : bool, int, or str, optional
    If not ``None``, this is a location specifying where to draw an
    *inset* or *outer* colorbar from the resulting object(s). If ``True``,
    the default :rc:`colorbar.loc` is used. If the same location is
    used in successive plotting calls, object(s) will be added to the
    existing colorbar in that location (valid for colorbars built from lists
    of artists). Valid locations are shown in in `~ultraplot.axes.Axes.colorbar`.
colorbar_kw : dict-like, optional
    Extra keyword args for the call to `~ultraplot.axes.Axes.colorbar`.
legend : bool, int, or str, optional
    Location specifying where to draw an *inset* or *outer* legend from the
    resulting object(s). If ``True``, the default :rc:`legend.loc` is used.
    If the same location is used in successive plotting calls, object(s)
    will be added to existing legend in that location. Valid locations
    are shown in :meth:`~ultraplot.axes.Axes.legend`.
legend_kw : dict-like, optional
    Extra keyword args for the call to :class:`~ultraplot.axes.Axes.legend`.
"""
docstring._snippet_manager["plot.guide"] = _guide_docstring


# Misc shared 1D plotting docstrings
_inbounds_docstring = """
inbounds : bool, default: :rc:`axes.inbounds`
    Whether to restrict the default `y` (`x`) axis limits to account for only
    in-bounds data when the `x` (`y`) axis limits have been locked.
    See also :rcraw:`axes.inbounds` and :rcraw:`cmap.inbounds`.
"""
_error_means_docstring = """
mean, means : bool, default: False
    Whether to plot the means of each column for 2D `{y}` coordinates. Means
    are calculated with `numpy.nanmean`. If no other arguments are specified,
    this also sets ``barstd=True`` (and ``boxstd=True`` for violin plots).
median, medians : bool, default: False
    Whether to plot the medians of each column for 2D `{y}` coordinates. Medians
    are calculated with `numpy.nanmedian`. If no other arguments arguments are
    specified, this also sets ``barstd=True`` (and ``boxstd=True`` for violin plots).
"""
_error_bars_docstring = """
bars : bool, default: None
    Shorthand for `barstd`, `barstds`.
barstd, barstds : bool, float, or 2-tuple of float, optional
    Valid only if `mean` or `median` is ``True``. Standard deviation multiples for
    *thin error bars* with optional whiskers (i.e., caps). If scalar, then +/- that
    multiple is used. If ``True``, the default standard deviation range of +/-3 is used.
barpctile, barpctiles : bool, float, or 2-tuple of float, optional
    Valid only if `mean` or `median` is ``True``. As with `barstd`, but instead
    using percentiles for the error bars. If scalar, that percentile range is
    used (e.g., ``90`` shows the 5th to 95th percentiles). If ``True``, the default
    percentile range of 0 to 100 is used.
bardata : array-like, optional
    Valid only if `mean` and `median` are ``False``. If shape is 2 x N, these
    are the lower and upper bounds for the thin error bars. If shape is N, these
    are the absolute, symmetric deviations from the central points.
boxes : bool, default: None
    Shorthand for `boxstd`, `boxstds`.
boxstd, boxstds, boxpctile, boxpctiles, boxdata : optional
    As with `barstd`, `barpctile`, and `bardata`, but for *thicker error bars*
    representing a smaller interval than the thin error bars. If `boxstds` is
    ``True``, the default standard deviation range of +/-1 is used. If `boxpctiles`
    is ``True``, the default percentile range of 25 to 75 is used (i.e., the
    interquartile range). When "boxes" and "bars" are combined, this has the
    effect of drawing miniature box-and-whisker plots.
capsize : float, default: :rc:`errorbar.capsize`
    The cap size for thin error bars in points.
barz, barzorder, boxz, boxzorder : float, default: 2.5
    The "zorder" for the thin and thick error bars.
barc, barcolor, boxc, boxcolor \
: color-spec, default: :rc:`boxplot.whiskerprops.color`
    Colors for the thin and thick error bars.
barlw, barlinewidth, boxlw, boxlinewidth \
: float, default: :rc:`boxplot.whiskerprops.linewidth`
    Line widths for the thin and thick error bars, in points. The default for boxes
    is 4 times :rcraw:`boxplot.whiskerprops.linewidth`.
boxm, boxmarker : bool or marker-spec, default: 'o'
    Whether to draw a small marker in the middle of the box denoting
    the mean or median position. Ignored if `boxes` is ``False``.
boxms, boxmarkersize : size-spec, default: ``(2 * boxlinewidth) ** 2``
    The marker size for the `boxmarker` marker in points ** 2.
boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor : color-spec, default: 'w'
    Color, face color, and edge color for the `boxmarker` marker.
"""
_error_shading_docstring = """
shade : bool, default: None
    Shorthand for `shadestd`.
shadestd, shadestds, shadepctile, shadepctiles, shadedata : optional
    As with `barstd`, `barpctile`, and `bardata`, but using *shading* to indicate
    the error range. If `shadestds` is ``True``, the default standard deviation
    range of +/-2 is used. If `shadepctiles` is ``True``, the default
    percentile range of 10 to 90 is used.
fade : bool, default: None
    Shorthand for `fadestd`.
fadestd, fadestds, fadepctile, fadepctiles, fadedata : optional
    As with `shadestd`, `shadepctile`, and `shadedata`, but for an additional,
    more faded, *secondary* shaded region. If `fadestds` is ``True``, the default
    standard deviation range of +/-3 is used. If `fadepctiles` is ``True``,
    the default percentile range of 0 to 100 is used.
shadec, shadecolor, fadec, fadecolor : color-spec, default: None
    Colors for the different shaded regions. The parent artist color is used by default.
shadez, shadezorder, fadez, fadezorder : float, default: 1.5
    The "zorder" for the different shaded regions.
shadea, shadealpha, fadea, fadealpha : float, default: 0.4, 0.2
    The opacity for the different shaded regions.
shadelw, shadelinewidth, fadelw, fadelinewidth : float, default: :rc:`patch.linewidth`.
    The edge line width for the shading patches.
shdeec, shadeedgecolor, fadeec, fadeedgecolor : float, default: 'none'
    The edge color for the shading patches.
shadelabel, fadelabel : bool or str, optional
    Labels for the shaded regions to be used as separate legend entries. To toggle
    labels "on" and apply a *default* label, use e.g. ``shadelabel=True``. To apply
    a *custom* label, use e.g. ``shadelabel='label'``. Otherwise, the shading is
    drawn underneath the line and/or marker in the legend entry.
"""
docstring._snippet_manager["plot.inbounds"] = _inbounds_docstring
docstring._snippet_manager["plot.error_means_y"] = _error_means_docstring.format(y="y")
docstring._snippet_manager["plot.error_means_x"] = _error_means_docstring.format(y="x")
docstring._snippet_manager["plot.error_bars"] = _error_bars_docstring
docstring._snippet_manager["plot.error_shading"] = _error_shading_docstring


# Color docstrings
_cycle_docstring = """
cycle : cycle-spec, optional
    The cycle specifer, passed to the `~ultraplot.constructor.Cycle` constructor.
    If the returned cycler is unchanged from the current cycler, the axes
    cycler will not be reset to its first position. To disable property cycling
    and just use black for the default color, use ``cycle=False``, ``cycle='none'``,
    or ``cycle=()`` (analogous to disabling ticks with e.g. ``xformatter='none'``).
    To restore the default property cycler, use ``cycle=True``.
cycle_kw : dict-like, optional
    Passed to `~ultraplot.constructor.Cycle`.
"""
_cmap_norm_docstring = """
cmap : colormap-spec, default: \
:rc:`cmap.sequential` or :rc:`cmap.diverging`
    The colormap specifer, passed to the :class:`~ultraplot.constructor.Colormap` constructor
    function. If :rcraw:`cmap.autodiverging` is ``True`` and the normalization
    range contains negative and positive values then :rcraw:`cmap.diverging` is used.
    Otherwise :rcraw:`cmap.sequential` is used.
cmap_kw : dict-like, optional
    Passed to :class:`~ultraplot.constructor.Colormap`.
c, color, colors : color-spec or sequence of color-spec, optional
    The color(s) used to create a :class:`~ultraplot.colors.DiscreteColormap`.
    If not passed, `cmap` is used.
norm : norm-spec, default: \
`~matplotlib.colors.Normalize` or `~ultraplot.colors.DivergingNorm`
    The data value normalizer, passed to the `~ultraplot.constructor.Norm`
    constructor function. If `discrete` is ``True`` then 1) this affects the default
    level-generation algorithm (e.g. ``norm='log'`` builds levels in log-space) and
    2) this is passed to `~ultraplot.colors.DiscreteNorm` to scale the colors before they
    are discretized (if `norm` is not already a `~ultraplot.colors.DiscreteNorm`).
    If :rcraw:`cmap.autodiverging` is ``True`` and the normalization range contains
    negative and positive values then `~ultraplot.colors.DivergingNorm` is used.
    Otherwise `~matplotlib.colors.Normalize` is used.
norm_kw : dict-like, optional
    Passed to `~ultraplot.constructor.Norm`.
extend : {'neither', 'both', 'min', 'max'}, default: 'neither'
    Direction for drawing colorbar "extensions" indicating
    out-of-bounds data on the end of the colorbar.
discrete : bool, default: :rc:`cmap.discrete`
    If ``False``, then `~ultraplot.colors.DiscreteNorm` is not applied to the
    colormap. Instead, for non-contour plots, the number of levels will be
    roughly controlled by :rcraw:`cmap.lut`. This has a similar effect to
    using `levels=large_number` but it may improve rendering speed. Default is
    ``True`` only for contouring commands like `~ultraplot.axes.Axes.contourf`
    and pseudocolor commands like `~ultraplot.axes.Axes.pcolor`.
sequential, diverging, cyclic, qualitative : bool, default: None
    Boolean arguments used if `cmap` is not passed. Set these to ``True``
    to use the default :rcraw:`cmap.sequential`, :rcraw:`cmap.diverging`,
    :rcraw:`cmap.cyclic`, and :rcraw:`cmap.qualitative` colormaps.
    The `diverging` option also applies `~ultraplot.colors.DivergingNorm`
    as the default continuous normalizer.
"""
docstring._snippet_manager["plot.cycle"] = _cycle_docstring
docstring._snippet_manager["plot.cmap_norm"] = _cmap_norm_docstring

_log_doc = """
Plot {kind}

UltraPlot is optimized for visualizing logarithmic scales by default. For cases with large differences in magnitude,
we recommend setting `rc["formatter.log"] = True` to enhance axis label formatting.
{matplotlib_doc}
"""

docstring._snippet_manager["plot.loglog"] = _log_doc.format(
    kind="loglog", matplotlib_doc=mplt.loglog.__doc__
)

docstring._snippet_manager["plot.semilogy"] = _log_doc.format(
    kind="semilogy", matplotlib_doc=mplt.semilogy.__doc__
)

docstring._snippet_manager["plot.semilogx"] = _log_doc.format(
    kind="semilogx", matplotlib_doc=mplt.semilogx.__doc__
)

# Levels docstrings
# NOTE: In some functions we only need some components
_vmin_vmax_docstring = """
vmin, vmax : float, optional
    The minimum and maximum color scale values used with the `norm` normalizer.
    If `discrete` is ``False`` these are the absolute limits, and if `discrete`
    is ``True`` these are the approximate limits used to automatically determine
    `levels` or `values` lists at "nice" intervals. If `levels` or `values` were
    already passed as lists, these are ignored, and `vmin` and `vmax` are set to
    the minimum and maximum of the lists. If `robust` was passed, the default `vmin`
    and `vmax` are some percentile range of the data values. Otherwise, the default
    `vmin` and `vmax` are the minimum and maximum of the data values.
"""
_manual_levels_docstring = """
N
    Shorthand for `levels`.
levels : int or sequence of float, default: :rc:`cmap.levels`
    The number of level edges or a sequence of level edges. If the former, `locator`
    is used to generate this many level edges at "nice" intervals. If the latter,
    the levels should be monotonically increasing or decreasing (note decreasing
    levels fail with ``contour`` plots).
values : int or sequence of float, default: None
    The number of level centers or a sequence of level centers. If the former,
    `locator` is used to generate this many level centers at "nice" intervals.
    If the latter, levels are inferred using `~ultraplot.utils.edges`.
    This will override any `levels` input.
center_levels : bool, default False
    If set to true, the discrete color bar bins will be centered on the level values
    instead of using the level values as the edges of the discrete bins. This option
    can be used for diverging, discrete color bars with both positive and negative
    data to ensure data near zero is properly represented.
"""
_auto_levels_docstring = """
robust : bool, float, or 2-tuple, default: :rc:`cmap.robust`
    If ``True`` and `vmin` or `vmax` were not provided, they are
    determined from the 2nd and 98th data percentiles rather than the
    minimum and maximum. If float, this percentile range is used (for example,
    ``90`` corresponds to the 5th to 95th percentiles). If 2-tuple of float,
    these specific percentiles should be used. This feature is useful
    when your data has large outliers.
inbounds : bool, default: :rc:`cmap.inbounds`
    If ``True`` and `vmin` or `vmax` were not provided, when axis limits
    have been explicitly restricted with :func:`~matplotlib.axes.Axes.set_xlim`
    or :func:`~matplotlib.axes.Axes.set_ylim`, out-of-bounds data is ignored.
    See also :rcraw:`cmap.inbounds` and :rcraw:`axes.inbounds`.
locator : locator-spec, default: `matplotlib.ticker.MaxNLocator`
    The locator used to determine level locations if `levels` or `values` were not
    already passed as lists. Passed to the `~ultraplot.constructor.Locator` constructor.
    Default is `~matplotlib.ticker.MaxNLocator` with `levels` integer levels.
locator_kw : dict-like, optional
    Keyword arguments passed to `matplotlib.ticker.Locator` class.
symmetric : bool, default: False
    If ``True``, the normalization range or discrete colormap levels are
    symmetric about zero.
positive : bool, default: False
    If ``True``, the normalization range or discrete colormap levels are
    positive with a minimum at zero.
negative : bool, default: False
    If ``True``, the normaliation range or discrete colormap levels are
    negative with a minimum at zero.
nozero : bool, default: False
    If ``True``, ``0`` is removed from the level list. This is mainly useful for
    single-color `~matplotlib.axes.Axes.contour` plots.
"""
docstring._snippet_manager["plot.vmin_vmax"] = _vmin_vmax_docstring
docstring._snippet_manager["plot.levels_manual"] = _manual_levels_docstring
docstring._snippet_manager["plot.levels_auto"] = _auto_levels_docstring


# Labels docstrings
_label_docstring = """
label, value : float or str, optional
    The single legend label or colorbar coordinate to be used for
    this plotted element. Can be numeric or string. This is generally
    used with 1D positional arguments.
"""
_labels_1d_docstring = """
%(plot.label)s
labels, values : sequence of float or sequence of str, optional
    The legend labels or colorbar coordinates used for each plotted element.
    Can be numeric or string, and must match the number of plotted elements.
    This is generally used with 2D positional arguments.
"""
_labels_2d_docstring = """
label : str, optional
    The legend label to be used for this object. In the case of
    contours, this is paired with the the central artist in the artist
    list returned by `matplotlib.contour.ContourSet.legend_elements`.
labels : bool, optional
    Whether to apply labels to contours and grid boxes. The text will be
    white when the luminance of the underlying filled contour or grid box
    is less than 50 and black otherwise.
labels_kw : dict-like, optional
    Ignored if `labels` is ``False``. Extra keyword args for the labels.
    For contour plots, this is passed to `~matplotlib.axes.Axes.clabel`.
    Otherwise, this is passed to `~matplotlib.axes.Axes.text`.
formatter, fmt : formatter-spec, optional
    The `~matplotlib.ticker.Formatter` used to format number labels.
    Passed to the `~ultraplot.constructor.Formatter` constructor.
formatter_kw : dict-like, optional
    Keyword arguments passed to `matplotlib.ticker.Formatter` class.
precision : int, optional
    The maximum number of decimal places for number labels generated
    with the default formatter `~ultraplot.ticker.Simpleformatter`.
"""
docstring._snippet_manager["plot.label"] = _label_docstring
docstring._snippet_manager["plot.labels_1d"] = _labels_1d_docstring
docstring._snippet_manager["plot.labels_2d"] = _labels_2d_docstring


# Negative-positive colors
_negpos_docstring = """
negpos : bool, default: False
    Whether to shade {objects} where ``{pos}`` with `poscolor`
    and where ``{neg}`` with `negcolor`. If ``True`` this
    function will return a length-2 silent list of handles.
negcolor, poscolor : color-spec, default: :rc:`negcolor`, :rc:`poscolor`
    Colors to use for the negative and positive {objects}. Ignored if
    `negpos` is ``False``.
"""
docstring._snippet_manager["plot.negpos_fill"] = _negpos_docstring.format(
    objects="patches", neg="y2 < y1", pos="y2 >= y1"
)
docstring._snippet_manager["plot.negpos_lines"] = _negpos_docstring.format(
    objects="lines", neg="ymax < ymin", pos="ymax >= ymin"
)
docstring._snippet_manager["plot.negpos_bar"] = _negpos_docstring.format(
    objects="bars", neg="height < 0", pos="height >= 0"
)


# Plot docstring
_plot_docstring = """
Plot standard lines.

Parameters
----------
%(plot.args_1d_{y})s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(artist.line)s
%(plot.error_means_{y})s
%(plot.error_bars)s
%(plot.error_shading)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to :func:`~matplotlib.axes.Axes.plot`.

See also
--------
PlotAxes.plot
PlotAxes.plotx
matplotlib.axes.Axes.plot
"""
docstring._snippet_manager["plot.plot"] = _plot_docstring.format(y="y")
docstring._snippet_manager["plot.plotx"] = _plot_docstring.format(y="x")


# Step docstring
# NOTE: Internally matplotlib implements step with thin wrapper of plot
_step_docstring = """
Plot step lines.

Parameters
----------
%(plot.args_1d_{y})s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(artist.line)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.step`.

See also
--------
PlotAxes.step
PlotAxes.stepx
matplotlib.axes.Axes.step
"""
docstring._snippet_manager["plot.step"] = _step_docstring.format(y="y")
docstring._snippet_manager["plot.stepx"] = _step_docstring.format(y="x")


# Stem docstring
_stem_docstring = """
Plot stem lines.

Parameters
----------
%(plot.args_1d_{y})s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(plot.inbounds)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.stem`.
"""
docstring._snippet_manager["plot.stem"] = _stem_docstring.format(y="x")
docstring._snippet_manager["plot.stemx"] = _stem_docstring.format(y="x")


# Lines docstrings
_lines_docstring = """
Plot {orientation} lines.

Parameters
----------
%(plot.args_1d_multi{y})s
%(plot.args_1d_shared)s

Other parameters
----------------
stack, stacked : bool, default: False
    Whether to "stack" lines from successive columns of {y} data
    or plot lines on top of each other.
%(plot.cycle)s
%(artist.line)s
%(plot.negpos_lines)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.{prefix}lines`.

See also
--------
PlotAxes.vlines
PlotAxes.hlines
matplotlib.axes.Axes.vlines
matplotlib.axes.Axes.hlines
"""
docstring._snippet_manager["plot.vlines"] = _lines_docstring.format(
    y="y", prefix="v", orientation="vertical"
)
docstring._snippet_manager["plot.hlines"] = _lines_docstring.format(
    y="x", prefix="h", orientation="horizontal"
)


# Scatter docstring
_parametric_docstring = """
Plot a parametric line.

Parameters
----------
%(plot.args_1d_y)s
c, color, colors, values, labels : sequence of float, str, or color-spec, optional
    The parametric coordinate(s). These can be passed as a third positional
    argument or as a keyword argument. If they are float, the colors will be
    determined from `norm` and `cmap`. If they are strings, the color values
    will be ``np.arange(len(colors))`` and eventual colorbar ticks will
    be labeled with the strings. If they are colors, they are used for the
    line segments and `cmap` is ignored -- for example, ``colors='blue'``
    makes a monochromatic "parametric" line.
interp : int, default: 0
    Interpolate to this many additional points between the parametric
    coordinates. This can be increased to make the color gradations
    between a small number of coordinates appear "smooth".
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.vmin_vmax)s
%(plot.inbounds)s
scalex, scaley : bool, optional
    Whether the view limits are adapted to the data limits. The values are
    passed on to `~matplotlib.axes.Axes.autoscale_view`.
%(plot.label)s
%(plot.guide)s
**kwargs
    Valid :class:`~matplotlib.collections.LineCollection` properties.

Returns
-------
:class:`~matplotlib.collections.LineCollection`
    The parametric line. See `this matplotlib example \
<https://matplotlib.org/stable/gallery/lines_bars_and_markers/multicolored_line>`__.

See also
--------
PlotAxes.plot
PlotAxes.plotx
matplotlib.collections.LineCollection
"""
docstring._snippet_manager["plot.parametric"] = _parametric_docstring


# Scatter function docstring
_scatter_docstring = """
Plot markers with flexible keyword arguments.

Parameters
----------
%(plot.args_1d_{y})s
s, size, ms, markersize : float or array-like or unit-spec, optional
    The marker size area(s). If this is an array matching the shape of `x` and `y`,
    the units are scaled by `smin` and `smax`. If this contains unit string(s), it
    is processed by `~ultraplot.utils.units` and represents the width rather than area.
c, color, colors, mc, markercolor, markercolors, fc, facecolor, facecolors \
: array-like or color-spec, optional
    The marker color(s). If this is an array matching the shape of `x` and `y`,
    the colors are generated using `cmap`, `norm`, `vmin`, and `vmax`. Otherwise,
    this should be a valid matplotlib color.
smin, smax : float, optional
    The minimum and maximum marker size area in units ``points ** 2``. Ignored
    if `absolute_size` is ``True``. Default value for `smin` is ``1`` and for
    `smax` is the square of :rc:`lines.markersize`.
area_size : bool, default: True
    Whether the marker sizes `s` are scaled by area or by radius. The default
    ``True`` is consistent with matplotlib. When `absolute_size` is ``True``,
    the `s` units are ``points ** 2`` if `area_size` is ``True`` and ``points``
    if `area_size` is ``False``.
absolute_size : bool, default: True or False
    Whether `s` should be taken to represent "absolute" marker sizes in units
    ``points`` or ``points ** 2`` or "relative" marker sizes scaled by `smin`
    and `smax`. Default is ``True`` if `s` is scalar and ``False`` if `s` is
    array-like or `smin` or `smax` were passed.
%(plot.vmin_vmax)s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.levels_manual)s
%(plot.levels_auto)s
%(plot.cycle)s
lw, linewidth, linewidths, mew, markeredgewidth, markeredgewidths \
: float or sequence, optional
    The marker edge width(s).
edgecolors, markeredgecolor, markeredgecolors \
: color-spec or sequence, optional
    The marker edge color(s).
%(plot.error_means_{y})s
%(plot.error_bars)s
%(plot.error_shading)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.scatter`.

See also
--------
PlotAxes.scatter
PlotAxes.scatterx
matplotlib.axes.Axes.scatter
"""
docstring._snippet_manager["plot.scatter"] = _scatter_docstring.format(y="y")
docstring._snippet_manager["plot.scatterx"] = _scatter_docstring.format(y="x")

_beeswarm_docstring = """
Beeswarm plot with `SHAP-style <https://shap.readthedocs.io/en/latest/generated/shap.plots.beeswarm.html#shap.plots.beeswarm>`_ feature value coloring.

Parameters
----------
data: array-like
    The data to be plotted.  It is assumed the shape of `data` is (N, M) where N is the number of points and M is the number of features.
levels: array-like, optional
    The levels to use for the beeswarm plot. If not provided, the levels are automatically determined based on the data.
n_bins: int or array-like, default: 50
    Number of bins to use to reduce the overlap between points.
    Bins are used to determine how crowded the points are for each level of the `y` coordinate.
 s, size, ms, markersize : float or array-like or unit-spec, optional
     The marker size area(s). If this is an array matching the shape of `x` and `y`,
     the units are scaled by `smin` and `smax`. If this contains unit string(s), it
     is processed by `~ultraplot.utils.units` and represents the width rather than area.
 c, color, colors, mc, markercolor, markercolors, fc, facecolor, facecolors \
 : array-like or color-spec, optional
     The marker color(s). If this is an array matching the shape of `x` and `y`,
     the colors are generated using `cmap`, `norm`, `vmin`, and `vmax`. Otherwise,
     this should be a valid matplotlib color.
 smin, smax : float, optional
     The minimum and maximum marker size area in units ``points ** 2``. Ignored
     if `absolute_size` is ``True``. Default value for `smin` is ``1`` and for
     `smax` is the square of :rc:`lines.markersize`.
 area_size : bool, default: True
     Whether the marker sizes `s` are scaled by area or by radius. The default
     ``True`` is consistent with matplotlib. When `absolute_size` is ``True``,
     the `s` units are ``points ** 2`` if `area_size` is ``True`` and ``points``
     if `area_size` is ``False``.
 absolute_size : bool, default: True or False
     Whether `s` should be taken to represent "absolute" marker sizes in units
     ``points`` or ``points ** 2`` or "relative" marker sizes scaled by `smin`
     and `smax`. Default is ``True`` if `s` is scalar and ``False`` if `s` is
     array-like or `smin` or `smax` were passed.
 %(plot.vmin_vmax)s
 %(plot.args_1d_shared)s

 Other parameters
 ----------------
 %(plot.cmap_norm)s
 %(plot.levels_manual)s
 %(plot.levels_auto)s
 %(plot.cycle)s
 lw, linewidth, linewidths, mew, markeredgewidth, markeredgewidths \
 : float or sequence, optional
     The marker edge width(s).
 edgecolors, markeredgecolor, markeredgecolors \
 : color-spec or sequence, optional
     The marker edge color(s).
 %(plot.error_means_{y})s
 %(plot.error_bars)s
 %(plot.error_shading)s
 %(plot.inbounds)s
 %(plot.labels_1d)s
 %(plot.guide)s
 **kwargs
     Passed to `~matplotlib.axes.Axes.scatter`.

 See also
 --------
 PlotAxes.scatter
 PlotAxes.scatterx
 matplotlib.axes.Axes.scatter
"""
docstring._snippet_manager["plot.beeswarm"] = _beeswarm_docstring.format(y="y")

# Bar function docstring
_bar_docstring = """
Plot individual, grouped, or stacked bars.

Parameters
----------
%(plot.args_1d_{y})s
width : float or array-like, default: 0.8
    The width(s) of the bars. Can be passed as a third positional argument. If
    `absolute_width` is ``True`` (the default) these are in units relative to the
    {x} coordinate step size. Otherwise these are in {x} coordinate units.
{bottom} : float or array-like, default: 0
    The coordinate(s) of the {bottom} edge of the bars.
    Can be passed as a fourth positional argument.
absolute_width : bool, default: False
    Whether to make the `width` units *absolute*. If ``True``,
    this restores the default matplotlib behavior.
stack, stacked : bool, default: False
    Whether to "stack" bars from successive columns of {y}
    data or plot bars side-by-side in groups.
bar_labels : bool, default rc["bar.bar_labels"]
    Whether to show the height values for vertical bars or width values for horizontal bars.
bar_labels_kw : dict, default None
    Keywords to format the bar_labels, see :func:`~matplotlib.pyplot.bar_label`.
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(artist.patch)s
%(plot.negpos_bar)s
%(axes.edgefix)s
%(plot.error_means_{y})s
%(plot.error_bars)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.bar{suffix}`.

See also
--------
PlotAxes.bar
PlotAxes.barh
matplotlib.axes.Axes.bar
matplotlib.axes.Axes.barh
"""
docstring._snippet_manager["plot.bar"] = _bar_docstring.format(
    x="x", y="y", bottom="bottom", suffix=""
)
docstring._snippet_manager["plot.barh"] = _bar_docstring.format(
    x="y", y="x", bottom="left", suffix="h"
)


_lollipop_docstring = """
Plot individual or group lollipop graphs.

A lollipop graph is a bar graph with the bars replaced by dots connected to the {which}-axis by lines.

Inputs such as arrays (`x` or `y`) or dataframes (`pandas` or `xarray`) are passed through :func:`~ultraplot.PlotAxes.bar`. Colors are inferred from the bar objects and parsed automatically. Formatting of the lollipop consists of controlling the `stem` and the `marker`. The stem properties can be set for the width, size, or color. Marker formatting follows the same inputs to :func:`~ultraplot.PlotAxes.scatter`.

Parameters
----------
%(plot.args_1d_{which})s
stemlinewdith: str, default `rc["lollipop.stemlinewidth"]`
stemcolor: str, default `rc["lollipop.stemcolor"]`
    Line color of the lines connecting the dots to the {which}-axis. Defaults to `rc["lollipop.linecolor"]`.
stemlinestyle: str, default: `rc["lollipop.stemlinestyle"]`
    The style of the lines connecting the dots to the {which}-axis. Defaults to `rc["lollipop.linestyle"]`.
s, size, ms, markersize : float or array-like or unit-spec, optional
    The marker size area(s). If this is an array matching the shape of `x` and `y`,
    the units are scaled by `smin` and `smax`. If this contains unit string(s), it
    is processed by `~ultraplot.utils.units` and represents the width rather than area.
c, color, colors, mc, markercolor, markercolors, fc, facecolor, facecolors \
: array-like or color-spec, optional
    The marker color(s). If this is an array matching the shape of `x` and `y`,
    the colors are generated using `cmap`, `norm`, `vmin`, and `vmax`. Otherwise,
    this should be a valid matplotlib color.
smin, smax : float, optional
    The minimum and maximum marker size area in units ``points ** 2``. Ignored
    if `absolute_size` is ``True``. Default value for `smin` is ``1`` and for
    `smax` is the square of :rc:`lines.markersize`.
area_size : bool, default: True
    Whether the marker sizes `s` are scaled by area or by radius. The default
    ``True`` is consistent with matplotlib. When `absolute_size` is ``True``,
    the `s` units are ``points ** 2`` if `area_size` is ``True`` and ``points``
    if `area_size` is ``False``.
absolute_size : bool, default: True or False
    Whether `s` should be taken to represent "absolute" marker sizes in units
    ``points`` or ``points ** 2`` or "relative" marker sizes scaled by `smin`
    and `smax`. Default is ``True`` if `s` is scalar and ``False`` if `s` is
    array-like or `smin` or `smax` were passed.
%(plot.vmin_vmax)s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.levels_manual)s
%(plot.levels_auto)s
%(plot.cycle)s
lw, linewidth, linewidths, mew, markeredgewidth, markeredgewidths \
: float or sequence, optional
    The marker edge width(s).
edgecolors, markeredgecolor, markeredgecolors \
: color-spec or sequence, optional
    The marker edge color(s).
%(plot.error_means_{which})s
%(plot.error_bars)s
%(plot.error_shading)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.scatter`.

See for more info on the grouping behavior :func:`~ultraplot.PlotAxes.bar`, and for formatting :func:`~ultraplot.PlotAxes.scatter`.
Returns
-------
List of ~matplotlib.collections.PatchCollection, and a ~matplotlib.collections.LineCollection
"""
docstring._snippet_manager["plot.lollipop"] = _lollipop_docstring.format(which="x")
docstring._snippet_manager["plot.lollipoph"] = _lollipop_docstring.format(which="y")


# Area plot docstring
_fill_docstring = """
Plot individual, grouped, or overlaid shading patches.

Parameters
----------
%(plot.args_1d_multi{y})s
stack, stacked : bool, default: False
    Whether to "stack" area patches from successive columns of {y}
    data or plot area patches on top of each other.
%(plot.args_1d_shared)s

Other parameters
----------------
where : ndarray, optional
    A boolean mask for the points that should be shaded.
    See `this matplotlib example \
<https://matplotlib.org/stable/gallery/pyplots/whats_new_98_4_fill_between.html>`__.
%(plot.cycle)s
%(artist.patch)s
%(plot.negpos_fill)s
%(axes.edgefix)s
%(plot.inbounds)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.fill_between{suffix}`.

See also
--------
PlotAxes.area
PlotAxes.areax
PlotAxes.fill_between
PlotAxes.fill_betweenx
matplotlib.axes.Axes.fill_between
matplotlib.axes.Axes.fill_betweenx
"""
docstring._snippet_manager["plot.fill_between"] = _fill_docstring.format(
    x="x", y="y", suffix=""
)
docstring._snippet_manager["plot.fill_betweenx"] = _fill_docstring.format(
    x="y", y="x", suffix="x"
)


# Box plot docstrings
_boxplot_docstring = """
Plot {orientation} boxes and whiskers with a nice default style.

Parameters
----------
%(plot.args_1d_{y})s
%(plot.args_1d_shared)s

Other parameters
----------------
fill : bool, default: True
    Whether to fill the box with a color.
mean, means : bool, default: False
    If ``True``, this passes ``showmeans=True`` and ``meanline=True`` to
    `matplotlib.axes.Axes.boxplot`. Adds mean lines alongside the median.
%(plot.cycle)s
%(artist.patch_black)s
m, marker, ms, markersize : float or str, optional
    Marker style and size for the 'fliers', i.e. outliers. See the
    ``boxplot.flierprops`` `~matplotlib.rcParams` settings.
meanls, medianls, meanlinestyle, medianlinestyle, meanlinestyles, medianlinestyles \
: str, optional
    Line style for the mean and median lines drawn across the box.
    See the ``boxplot.meanprops`` and ``boxplot.medianprops``
    `~matplotlib.rcParams` settings.
boxc, capc, whiskerc, flierc, meanc, medianc, \
boxcolor, capcolor, whiskercolor, fliercolor, meancolor, mediancolor \
boxcolors, capcolors, whiskercolors, fliercolors, meancolors, mediancolors \
: color-spec or sequence, optional
    Color of various boxplot components. If a sequence, should be the same length as
    the number of boxes. These are shorthands so you don't have to pass e.g. a
    `boxprops` dictionary keyword. See the ``boxplot.boxprops``, ``boxplot.capprops``,
    ``boxplot.whiskerprops``, ``boxplot.flierprops``, ``boxplot.meanprops``, and
    ``boxplot.medianprops`` `~matplotlib.rcParams` settings.
boxlw, caplw, whiskerlw, flierlw, meanlw, medianlw, boxlinewidth, caplinewidth, \
meanlinewidth, medianlinewidth, whiskerlinewidth, flierlinewidth, boxlinewidths, \
caplinewidths, meanlinewidths, medianlinewidths, whiskerlinewidths, flierlinewidths \
: float, optional
    Line width of various boxplot components. These are shorthands so
    you don't have to pass e.g. a `boxprops` dictionary keyword.
    See the ``boxplot.boxprops``, ``boxplot.capprops``, ``boxplot.whiskerprops``,
    ``boxplot.flierprops``, ``boxplot.meanprops``, and ``boxplot.medianprops``
    `~matplotlib.rcParams` settings.
%(plot.labels_1d)s
**kwargs
    Passed to `matplotlib.axes.Axes.boxplot`.

See also
--------
PlotAxes.boxes
PlotAxes.boxesh
PlotAxes.boxplot
PlotAxes.boxploth
matplotlib.axes.Axes.boxplot
"""
docstring._snippet_manager["plot.boxplot"] = _boxplot_docstring.format(
    y="y", orientation="vertical"
)
docstring._snippet_manager["plot.boxploth"] = _boxplot_docstring.format(
    y="x", orientation="horizontal"
)


# Violin plot docstrings
_violinplot_docstring = """
Plot {orientation} violins with a nice default style matching
`this matplotlib example \
<https://matplotlib.org/stable/gallery/statistics/customized_violin.html>`__.

Parameters
----------
%(plot.args_1d_{y})s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(artist.patch_black)s
%(plot.labels_1d)s
showmeans, showmedians : bool, optional
    Interpreted as ``means=True`` and ``medians=True`` when passed.
showextrema : bool, optional
    Interpreted as ``barpctiles=True`` when passed (i.e. shows minima and maxima).
%(plot.error_bars)s
**kwargs
    Passed to `matplotlib.axes.Axes.violinplot`.

See also
--------
PlotAxes.violin
PlotAxes.violinh
PlotAxes.violinplot
PlotAxes.violinploth
matplotlib.axes.Axes.violinplot
"""
docstring._snippet_manager["plot.violinplot"] = _violinplot_docstring.format(
    y="y", orientation="vertical"
)
docstring._snippet_manager["plot.violinploth"] = _violinplot_docstring.format(
    y="x", orientation="horizontal"
)


# Ridgeline plot docstrings
_ridgeline_docstring = """
Create a {orientation} ridgeline plot (also known as a joyplot).

Ridgeline plots visualize distributions of multiple datasets as stacked,
overlapping density curves. They are useful for comparing distributions
across categories or over time.

Parameters
----------
data : list of array-like
    List of distributions to plot. Each element should be an array-like
    object containing the data points for one distribution.
labels : list of str, optional
    Labels for each distribution. If not provided, generates default labels.
positions : array-like, optional
    Y-coordinates for positioning each ridge. If provided, enables continuous
    (coordinate-based) positioning mode where ridges are anchored to specific
    numerical coordinates along the Y-axis. If None (default), uses categorical
    positioning with evenly-spaced ridges.
height : float or array-like, optional
    Height of each ridge in Y-axis units. Only used in continuous positioning mode
    (when positions is provided). Can be a single value applied to all ridges or
    an array of values (one per ridge). If None, defaults to the minimum spacing
    between positions divided by 2.
overlap : float, default: 0.5
    Amount of overlap between ridges, from 0 (no overlap) to 1 (full overlap).
    Higher values create more dramatic visual overlapping. Only used in categorical
    positioning mode (when positions is None).
kde_kw : dict, optional
    Keyword arguments passed to `scipy.stats.gaussian_kde`. Common parameters include:

    * ``bw_method`` : Bandwidth selection method (scalar, 'scott', 'silverman', or callable)
    * ``weights`` : Array of weights for each data point

    Only used when hist=False.
points : int, default: 200
    Number of evaluation points for KDE curves. Higher values create smoother
    curves but take longer to compute. Only used when hist=False.
hist : bool, default: False
    If True, uses histograms instead of kernel density estimation.
bins : int or sequence or str, default: 'auto'
    Bin specification for histograms. Can be an integer (number of bins),
    a sequence defining bin edges, or a string method ('auto', 'sturges', etc.).
    Only used when hist=True.
fill : bool, default: True
    Whether to fill the area under each density curve.
alpha : float, default: 0.7
    Transparency level for filled areas (0=transparent, 1=opaque).
linewidth : float, default: 1.5
    Width of the outline for each ridge.
edgecolor : color, default: 'black'
    Color of the ridge outlines.
facecolor : color or list of colors, optional
    Fill color(s) for the ridges. If a single color, applies to all ridges.
    If a list, must match the number of distributions. If None, uses the
    current color cycle or colormap.
cmap : str or Colormap, optional
    Colormap name or object to use for coloring ridges. Overridden by facecolor.

Returns
-------
list
    List of artist objects for each ridge (PolyCollection or Line2D).

Examples
--------
>>> import ultraplot as uplt
>>> import numpy as np
>>> fig, ax = uplt.subplots()
>>> data = [np.random.normal(i, 1, 1000) for i in range(5)]
>>> ax.ridgeline(data, labels=[f'Group {{i+1}}' for i in range(5)])

>>> # With colormap
>>> fig, ax = uplt.subplots()
>>> ax.ridgeline(data, cmap='viridis', overlap=0.7)

>>> # With histograms instead of KDE
>>> fig, ax = uplt.subplots()
>>> ax.ridgeline(data, hist=True, bins=20)

>>> # Continuous positioning (e.g., at specific depths)
>>> fig, ax = uplt.subplots()
>>> depths = [0, 10, 25, 50, 100]  # meters
>>> ax.ridgeline(data, positions=depths, height=8, labels=['Surface', '10m', '25m', '50m', '100m'])
>>> ax.format(ylabel='Depth (m)', xlabel='Temperature (°C)')

See Also
--------
violinplot : Violin plots for distribution visualization
hist : Histogram for single distribution
"""
docstring._snippet_manager["plot.ridgeline"] = _ridgeline_docstring.format(
    orientation="vertical"
)
docstring._snippet_manager["plot.ridgelineh"] = _ridgeline_docstring.format(
    orientation="horizontal"
)


# 1D histogram docstrings
_hist_docstring = """
Plot {orientation} histograms.

Parameters
----------
%(plot.args_1d_{y})s
bins : int or sequence of float, optional
    The bin count or exact bin edges.
%(plot.weights)s
histtype : {{'bar', 'barstacked', 'step', 'stepfilled'}}, optional
    The histogram type. See `matplotlib.axes.Axes.hist` for details.
width, rwidth : float, default: 0.8 or 1
    The bar width(s) for bar-type histograms relative to the bin size. Default
    is ``0.8`` for multiple columns of unstacked data and ``1`` otherwise.
stack, stacked : bool, optional
    Whether to "stack" successive columns of {y} data for bar-type histograms
    or show side-by-side in groups. Setting this to ``False`` is equivalent to
    ``histtype='bar'`` and to ``True`` is equivalent to ``histtype='barstacked'``.
fill, filled : bool, optional
    Whether to "fill" step-type histograms or just plot the edges. Setting
    this to ``False`` is equivalent to ``histtype='step'`` and to ``True``
    is equivalent to ``histtype='stepfilled'``.
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(artist.patch)s
%(axes.edgefix)s
%(plot.labels_1d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.hist`.

See also
--------
PlotAxes.hist
PlotAxes.histh
matplotlib.axes.Axes.hist
"""
_weights_docstring = """
weights : array-like, optional
    The weights associated with each point. If string this
    can be retrieved from `data` (see below).
"""
docstring._snippet_manager["plot.weights"] = _weights_docstring
docstring._snippet_manager["plot.hist"] = _hist_docstring.format(
    y="x", orientation="vertical"
)
docstring._snippet_manager["plot.histh"] = _hist_docstring.format(
    y="x", orientation="horizontal"
)


# 2D histogram docstrings
_hist2d_docstring = """
Plot a {descrip}.
standard 2D histogram.

Parameters
----------
%(plot.args_1d_y)s{bins}
%(plot.weights)s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.vmin_vmax)s
%(plot.levels_manual)s
%(plot.levels_auto)s
%(plot.labels_2d)s
%(plot.guide)s
**kwargs
    Passed to `~matplotlib.axes.Axes.{command}`.

See also
--------
PlotAxes.hist2d
PlotAxes.hexbin
matplotlib.axes.Axes.{command}
"""
_bins_docstring = """
bins : int or 2-tuple of int, or array-like or 2-tuple of array-like, optional
    The bin count or exact bin edges for each dimension or both dimensions.
""".rstrip()
docstring._snippet_manager["plot.hist2d"] = _hist2d_docstring.format(
    command="hist2d", descrip="standard 2D histogram", bins=_bins_docstring
)
docstring._snippet_manager["plot.hexbin"] = _hist2d_docstring.format(
    command="hexbin", descrip="2D hexagonally binned histogram", bins=""
)


# Pie chart docstring
_pie_docstring = """
Plot a pie chart.

Parameters
----------
%(plot.args_1d_y)s
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cycle)s
%(artist.patch)s
%(axes.edgefix)s
%(plot.labels_1d)s
labelpad, labeldistance : float, optional
    The distance at which labels are drawn in radial coordinates.

See also
--------
matplotlib.axes.Axes.pie
"""
docstring._snippet_manager["plot.pie"] = _pie_docstring


# Contour docstrings
_contour_docstring = """
Plot {descrip}.

Parameters
----------
%(plot.args_2d)s

%(plot.args_2d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.vmin_vmax)s
%(plot.levels_manual)s
%(plot.levels_auto)s
%(artist.collection_contour)s{edgefix}
%(plot.labels_2d)s
%(plot.guide)s
**kwargs
    Passed to `matplotlib.axes.Axes.{command}`.

See also
--------
PlotAxes.contour
PlotAxes.contourf
PlotAxes.tricontour
PlotAxes.tricontourf
matplotlib.axes.Axes.{command}
"""
docstring._snippet_manager["plot.contour"] = _contour_docstring.format(
    descrip="contour lines", command="contour", edgefix=""
)
docstring._snippet_manager["plot.contourf"] = _contour_docstring.format(
    descrip="filled contours",
    command="contourf",
    edgefix="%(axes.edgefix)s\n",
)
docstring._snippet_manager["plot.tricontour"] = _contour_docstring.format(
    descrip="contour lines on a triangular grid", command="tricontour", edgefix=""
)
docstring._snippet_manager["plot.tricontourf"] = _contour_docstring.format(
    descrip="filled contours on a triangular grid",
    command="tricontourf",
    edgefix="\n%(axes.edgefix)s",  # noqa: E501
)

_graph_docstring = r"""
Plot a networkx graph with flexible node, edge, and label options.

Parameters
----------
g : networkx.Graph
    The graph object to be plotted. Can be any subclass of :class:`~networkx.Graph`, such as
    :class:`~networkx.DiGraph` or :class:`~networkx.MultiGraph`.
layout : callable or dict, optional
    A layout function or a precomputed dict mapping nodes to 2D positions. If a function
    is given, it is called as ``layout(g, **layout_kw)`` to compute positions. See :func:`networkx.drawing.nx_pylab.draw` for more information.
nodes : bool or iterable, default: rc["graph.draw_nodes"]
    Which nodes to draw. If `True`, all nodes are drawn. If an iterable is provided, only
    the specified nodes are included. This effectively acts as `nodelist` in :func:`networkx.drawing.nx_pylab.draw_networkx_nodes`.
edges : bool or iterable, default: rc["graph.draw_edges"]
    Which edges to draw. If `True`, all edges are drawn. If an iterable of edge tuples is
    provided, only those edges are included. This effectively acts as `edgelist` in :func:`networkx.drawing.nx_pylab.draw_networkx_edges`.
labels : bool or iterable, default: `rc["graph.draw_labels`]
    Whether to show node labels. If `True`, labels are drawn using node names. If an
    iterable is given, only those nodes are labeled.
layout_kw : dict, default: {}
    Keyword arguments passed to the layout function, if `layout` is callable, see `networkx's drawing functions <https://networkx.org/documentation/stable/reference/drawing.html>`_ for more information.
node_kw : dict, default: {}
    Additional keyword arguments passed to the node drawing function (see :func:`networkx.drawing.nx_pylab.draw_networkx_nodes`). These can include
    size, color, edgecolor, cmap, alpha, etc., depending on the backend used, see :func:`networkx.drawing.nx_pylab.draw_networkx_nodes`.
edge_kw : dict, default: {}
    Additional keyword arguments passed to the edge drawing function. These can include
    width, color, style, alpha, arrows, etc (see :func:`networkx.drawing.nx_pylab.draw_networkx_edges`).
label_kw : dict, default: {}
    Additional keyword arguments passed to the label drawing function, such as font size,
    font color, background color, alignment, etc (see :func:`networkx.drawing.nx_pylab.draw_networkx_labels`).
rescale : bool,  None, default: None.
    When set to none it checks for `rc["graph.rescale"]` which defaults to `True`. This performs a rescale such that the node position is within a [0, 1] x [0, 1] box.
Returns
-------
Nodes, edges, labels output from the networkx drawing functions.

See also
--------
networkx.draw
networkx.draw_networkx
networkx.draw_networkx_nodes
networkx.draw_networkx_edges
networkx.draw_networkx_labels
"""

docstring._snippet_manager["plot.graph"] = _graph_docstring


# Pcolor docstring
_pcolor_docstring = """
Plot {descrip}.

Parameters
----------
%(plot.args_2d)s

%(plot.args_2d_shared)s{aspect}

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.vmin_vmax)s
%(plot.levels_manual)s
%(plot.levels_auto)s
%(artist.collection_pcolor)s
%(axes.edgefix)s
%(plot.labels_2d)s
%(plot.guide)s
**kwargs
    Passed to `matplotlib.axes.Axes.{command}`.

See also
--------
PlotAxes.pcolor
PlotAxes.pcolormesh
PlotAxes.pcolorfast
PlotAxes.heatmap
PlotAxes.tripcolor
matplotlib.axes.Axes.{command}
"""
_heatmap_descrip = """
grid boxes with formatting suitable for heatmaps. Ensures square grid
boxes, adds major ticks to the center of each grid box, disables minor
ticks and gridlines, and sets :rcraw:`cmap.discrete` to ``False`` by default
""".strip()
_heatmap_aspect = """
aspect : {'equal', 'auto'} or float, default: :rc:`image.aspet`
    Modify the axes aspect ratio. The aspect ratio is of particular relevance for
    heatmaps since it may lead to non-square grid boxes. This parameter is a shortcut
    for calling `~matplotlib.axes.set_aspect`. The options are as follows:

    * Number: The data aspect ratio.
    * ``'equal'``: A data aspect ratio of 1.
    * ``'auto'``: Allows the data aspect ratio to change depending on
      the layout. In general this results in non-square grid boxes.
""".rstrip()
docstring._snippet_manager["plot.pcolor"] = _pcolor_docstring.format(
    descrip="irregular grid boxes", command="pcolor", aspect=""
)
docstring._snippet_manager["plot.pcolormesh"] = _pcolor_docstring.format(
    descrip="regular grid boxes", command="pcolormesh", aspect=""
)
docstring._snippet_manager["plot.pcolorfast"] = _pcolor_docstring.format(
    descrip="grid boxes quickly", command="pcolorfast", aspect=""
)
docstring._snippet_manager["plot.tripcolor"] = _pcolor_docstring.format(
    descrip="triangular grid boxes", command="tripcolor", aspect=""
)
docstring._snippet_manager["plot.heatmap"] = _pcolor_docstring.format(
    descrip=_heatmap_descrip, command="pcolormesh", aspect=_heatmap_aspect
)


# Image docstring
_show_docstring = """
Plot {descrip}.

Parameters
----------
z : array-like
    The data passed as a positional argument or keyword argument.
%(plot.args_1d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.vmin_vmax)s
%(plot.levels_manual)s
%(plot.levels_auto)s
%(plot.guide)s
**kwargs
    Passed to `matplotlib.axes.Axes.{command}`.

See also
--------
ultraplot.axes.PlotAxes
matplotlib.axes.Axes.{command}
"""
docstring._snippet_manager["plot.imshow"] = _show_docstring.format(
    descrip="an image", command="imshow"
)
docstring._snippet_manager["plot.matshow"] = _show_docstring.format(
    descrip="a matrix", command="matshow"
)
docstring._snippet_manager["plot.spy"] = _show_docstring.format(
    descrip="a sparcity pattern", command="spy"
)


# Flow function docstring
_flow_docstring = """
Plot {descrip}.

Parameters
----------
%(plot.args_2d_flow)s

c, color, colors : array-like or color-spec, optional
    The colors of the {descrip} passed as either a keyword argument
    or a fifth positional argument. This can be a single color or
    a color array to be scaled by `cmap` and `norm`.
%(plot.args_2d_shared)s

Other parameters
----------------
%(plot.cmap_norm)s
%(plot.vmin_vmax)s
%(plot.levels_manual)s
%(plot.levels_auto)s
**kwargs
    Passed to `matplotlib.axes.Axes.{command}`

See also
--------
PlotAxes.barbs
PlotAxes.quiver
PlotAxes.stream
PlotAxes.streamplot
matplotlib.axes.Axes.{command}
"""
docstring._snippet_manager["plot.barbs"] = _flow_docstring.format(
    descrip="wind barbs", command="barbs"
)
docstring._snippet_manager["plot.quiver"] = _flow_docstring.format(
    descrip="quiver arrows", command="quiver"
)
docstring._snippet_manager["plot.stream"] = _flow_docstring.format(
    descrip="streamlines", command="streamplot"
)


def _get_vert(vert=None, orientation=None, **kwargs):
    """
    Get the orientation specified as either `vert` or `orientation`. This is
    used internally by various helper functions.
    """
    if vert is not None:
        return kwargs, vert
    elif orientation is not None:
        return kwargs, orientation != "horizontal"  # should already be validated
    else:
        return kwargs, True  # fallback


def _parse_vert(
    vert=None, orientation=None, default_vert=None, default_orientation=None, **kwargs
):
    """
    Interpret both 'vert' and 'orientation' and add to outgoing keyword args
    if a default is provided.
    """
    # NOTE: Users should only pass these to hist, boxplot, or violinplot. To change
    # the plot, scatter, area, or bar orientation users should use the differently
    # named functions. Internally, however, they use these keyword args.
    if default_vert is not None:
        kwargs["vert"] = _not_none(
            vert=vert,
            orientation=None if orientation is None else orientation == "vertical",
            default=default_vert,
        )
    if default_orientation is not None:
        kwargs["orientation"] = _not_none(
            orientation=orientation,
            vert=None if vert is None else "vertical" if vert else "horizontal",
            default=default_orientation,
        )
    if kwargs.get("orientation", None) not in (None, "horizontal", "vertical"):
        raise ValueError("Orientation must be either 'horizontal' or 'vertical'.")
    return kwargs


[docs] class PlotAxes(base.Axes): """ The second lowest-level `~matplotlib.axes.Axes` subclass used by ultraplot. Implements all plotting overrides. """
[docs] @docstring._snippet_manager def curved_quiver( self, x: np.ndarray, y: np.ndarray, u: np.ndarray, v: np.ndarray, linewidth: Optional[float] = None, color: Optional[Union[str, Any]] = None, cmap: Optional[Any] = None, norm: Optional[Any] = None, arrowsize: Optional[float] = None, arrowstyle: Optional[str] = None, transform: Optional[Any] = None, zorder: Optional[int] = None, start_points: Optional[np.ndarray] = None, scale: Optional[float] = None, grains: Optional[int] = None, density: Optional[int] = None, arrow_at_end: Optional[bool] = None, ): """ %(plot.curved_quiver)s Notes ----- The implementation of this function is based on the `dfm_tools` repository. Original file: https://github.com/Deltares/dfm_tools/blob/829e76f48ebc42460aae118cc190147a595a5f26/dfm_tools/modplot.py """ from .plot_types.curved_quiver import CurvedQuiverSet, CurvedQuiverSolver # Parse inputs arrowsize = _not_none(arrowsize, rc["curved_quiver.arrowsize"]) arrowstyle = _not_none(arrowstyle, rc["curved_quiver.arrowstyle"]) zorder = _not_none(zorder, mlines.Line2D.zorder) transform = _not_none(transform, self.transData) color = _not_none(color, self._get_lines.get_next_color()) linewidth = _not_none(linewidth, rc["lines.linewidth"]) scale = _not_none(scale, rc["curved_quiver.scale"]) grains = _not_none(grains, rc["curved_quiver.grains"]) density = _not_none(density, rc["curved_quiver.density"]) arrows_at_end = _not_none(arrow_at_end, rc["curved_quiver.arrows_at_end"]) if cmap: cmap = constructor.Colormap(cmap) solver = CurvedQuiverSolver(x, y, density) if zorder is None: zorder = mlines.Line2D.zorder line_kw = {} arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize) use_multicolor_lines = isinstance(color, np.ndarray) if use_multicolor_lines: if color.shape != solver.grid.shape: raise ValueError( "If 'color' is given, must have the shape of 'Grid(x,y)'" ) line_colors = [] color = np.ma.masked_invalid(color) else: line_kw["color"] = color arrow_kw["color"] = color if isinstance(linewidth, np.ndarray): if linewidth.shape != solver.grid.shape: raise ValueError( "If 'linewidth' is given, must have the shape of 'Grid(x,y)'" ) line_kw["linewidth"] = [] else: line_kw["linewidth"] = linewidth arrow_kw["linewidth"] = linewidth line_kw["zorder"] = zorder arrow_kw["zorder"] = zorder ## Sanity checks. if u.shape != solver.grid.shape or v.shape != solver.grid.shape: raise ValueError("'u' and 'v' must be of shape 'Grid(x,y)'") u = np.ma.masked_invalid(u) v = np.ma.masked_invalid(v) magnitude = np.sqrt(u**2 + v**2) magnitude /= np.max(magnitude) resolution = scale / grains minlength = 0.9 * resolution integrate = solver.get_integrator(u, v, minlength, resolution, magnitude) trajectories = [] edges = [] if start_points is None: start_points = solver.gen_starting_points(x, y, grains) sp2 = np.asanyarray(start_points, dtype=float).copy() # Check if start_points are outside the data boundaries for xs, ys in sp2: if not ( solver.grid.x_origin <= xs <= solver.grid.x_origin + solver.grid.width and solver.grid.y_origin <= ys <= solver.grid.y_origin + solver.grid.height ): raise ValueError( "Starting point ({}, {}) outside of data " "boundaries".format(xs, ys) ) if use_multicolor_lines: if norm is None: norm = mcolors.Normalize(color.min(), color.max()) if cmap is None: cmap = constructor.Colormap(rc["image.cmap"]) else: cmap = mcm.get_cmap(cmap) # Convert start_points from data to array coords # Shift the seed points from the bottom left of the data so that # data2grid works properly. sp2[:, 0] -= solver.grid.x_origin sp2[:, 1] -= solver.grid.y_origin for xs, ys in sp2: xg, yg = solver.domain_map.data2grid(xs, ys) t = integrate(xg, yg) if t is not None: trajectories.append(t[0]) edges.append(t[1]) streamlines = [] arrows = [] for t, edge in zip(trajectories, edges): tgx = np.array(t[0]) tgy = np.array(t[1]) # Rescale from grid-coordinates to data-coordinates. tx, ty = solver.domain_map.grid2data(*np.array(t)) tx += solver.grid.x_origin ty += solver.grid.y_origin points = np.transpose([tx, ty]).reshape(-1, 1, 2) streamlines.extend(np.hstack([points[:-1], points[1:]])) if len(tx) < 2: continue # Add arrows s = np.cumsum(np.sqrt(np.diff(tx) ** 2 + np.diff(ty) ** 2)) if arrow_at_end: if len(tx) < 2: continue arrow_tail = (tx[-1], ty[-1]) # Extrapolate to find arrow head xg, yg = solver.domain_map.data2grid( tx[-1] - solver.grid.x_origin, ty[-1] - solver.grid.y_origin ) ui = solver.interpgrid(u, xg, yg) vi = solver.interpgrid(v, xg, yg) norm_v = np.sqrt(ui**2 + vi**2) if norm_v > 0: ui /= norm_v vi /= norm_v if len(s) > 0: # use average segment length arrow_length = arrowsize * (s[-1] / len(s)) else: # fallback for very short streamlines arrow_length = ( arrowsize * 0.1 * np.mean([solver.grid.dx, solver.grid.dy]) ) arrow_head = (tx[-1] + ui * arrow_length, ty[-1] + vi * arrow_length) n = len(s) - 1 if len(s) > 0 else 0 else: n = np.searchsorted(s, s[-1] / 2.0) arrow_tail = (tx[n], ty[n]) arrow_head = (np.mean(tx[n : n + 2]), np.mean(ty[n : n + 2])) if isinstance(linewidth, np.ndarray): line_widths = solver.interpgrid(linewidth, tgx, tgy)[:-1] line_kw["linewidth"].extend(line_widths) arrow_kw["linewidth"] = line_widths[n] if use_multicolor_lines: color_values = solver.interpgrid(color, tgx, tgy)[:-1] line_colors.append(color_values) arrow_kw["color"] = cmap(norm(color_values[n])) if not edge: p = mpatches.FancyArrowPatch( arrow_tail, arrow_head, transform=transform, **arrow_kw ) else: continue ds = np.sqrt( (arrow_tail[0] - arrow_head[0]) ** 2 + (arrow_tail[1] - arrow_head[1]) ** 2 ) if ds < 1e-15: continue # remove vanishingly short arrows that cause Patch to fail self.add_patch(p) arrows.append(p) lc = mcollections.LineCollection(streamlines, transform=transform, **line_kw) lc.sticky_edges.x[:] = [ solver.grid.x_origin, solver.grid.x_origin + solver.grid.width, ] lc.sticky_edges.y[:] = [ solver.grid.y_origin, solver.grid.y_origin + solver.grid.height, ] if use_multicolor_lines: lc.set_array(np.ma.hstack(line_colors)) lc.set_cmap(cmap) lc.set_norm(norm) self.add_collection(lc) self.autoscale_view() ac = mcollections.PatchCollection(arrows) stream_container = CurvedQuiverSet(lc, ac) return stream_container
def _call_native(self, name, *args, **kwargs): """ Call the plotting method and redirect internal calls to native methods. """ # NOTE: Previously allowed internal matplotlib plotting function calls to run # through ultraplot overrides then avoided awkward conflicts in piecemeal fashion. # Now prevent internal calls from running through overrides using preprocessor kwargs.pop("distribution", None) # remove stat distributions with context._state_context(self, _internal_call=True): if self._name == "basemap": obj = getattr(self.projection, name)(*args, ax=self, **kwargs) else: obj = getattr(super(), name)(*args, **kwargs) return obj def _call_negpos( self, name, x, *ys, negcolor=None, poscolor=None, colorkey="facecolor", use_where=False, use_zero=False, **kwargs, ): """ Call the plotting method separately for "negative" and "positive" data. """ if use_where: kwargs.setdefault("interpolate", True) # see fill_between docs for key in ("color", "colors", "facecolor", "facecolors", "where"): value = kwargs.pop(key, None) if value is not None: warnings._warn_ultraplot( f"{name}() argument {key}={value!r} is incompatible with negpos=True. Ignoring." # noqa: E501 ) # Negative component yneg = list(ys) # copy if use_zero: # filter bar heights yneg[0] = inputs._safe_mask(ys[0] < 0, ys[0]) elif use_where: # apply fill_between mask kwargs["where"] = ys[1] < ys[0] else: yneg = inputs._safe_mask(ys[1] < ys[0], *ys) kwargs[colorkey] = _not_none(negcolor, rc["negcolor"]) negobj = self._call_native(name, x, *yneg, **kwargs) # Positive component ypos = list(ys) # copy if use_zero: # filter bar heights ypos[0] = inputs._safe_mask(ys[0] >= 0, ys[0]) elif use_where: # apply fill_between mask kwargs["where"] = ys[1] >= ys[0] else: ypos = inputs._safe_mask(ys[1] >= ys[0], *ys) kwargs[colorkey] = _not_none(poscolor, rc["poscolor"]) posobj = self._call_native(name, x, *ypos, **kwargs) return cbook.silent_list(type(negobj).__name__, (negobj, posobj)) def _add_auto_labels( self, obj, cobj=None, labels=False, labels_kw=None, fmt=None, formatter=None, formatter_kw=None, precision=None, ): """ Add number labels. Default formatter is `~ultraplot.ticker.SimpleFormatter` with a default maximum precision of ``3`` decimal places. """ # TODO: Add quiverkey to this! if not labels: return labels_kw = labels_kw or {} formatter_kw = formatter_kw or {} formatter = _not_none( fmt_labels_kw=labels_kw.pop("fmt", None), formatter_labels_kw=labels_kw.pop("formatter", None), fmt=fmt, formatter=formatter, default="simple", ) precision = _not_none( formatter_kw_precision=formatter_kw.pop("precision", None), precision=precision, default=3, # should be lower than the default intended for tick labels ) formatter = constructor.Formatter( formatter, precision=precision, **formatter_kw ) # noqa: E501 match obj: case mcontour.ContourSet(): self._add_contour_labels(obj, cobj, formatter, **labels_kw) case mcollections.QuadMesh(): self._add_quadmesh_labels(obj, formatter, **labels_kw) case mcollections.Collection(): self._add_collection_labels(obj, formatter, **labels_kw) case _: raise RuntimeError(f"Not possible to add labels to object {obj!r}.") def _add_quadmesh_labels( self, obj, fmt, *, c=None, color=None, colors=None, size=None, fontsize=None, **kwargs, ): """ Add labels to QuadMesh cells with support for shade-dependent text colors. Values are inferred from the unnormalized mesh cell color. """ # Parse input args obj.update_scalarmappable() color = _not_none(c=c, color=color, colors=colors) fontsize = _not_none(size=size, fontsize=fontsize, default=rc["font.smallsize"]) kwargs.setdefault("ha", "center") kwargs.setdefault("va", "center") # Get the mesh data array = obj.get_array() coords = obj.get_coordinates() # This gives vertices (11x11x2) # Calculate cell centers by averaging the four corners of each cell x_centers = (coords[:-1, :-1, 0] + coords[1:, 1:, 0]) / 2 y_centers = (coords[:-1, :-1, 1] + coords[1:, 1:, 1]) / 2 # Apply colors and create labels labs = [] for i, ((x, y), value) in enumerate( zip(zip(x_centers.flat, y_centers.flat), array.flat) ): # Skip masked or invalid values if value is ma.masked or not np.isfinite(value): continue # Handle discrete normalization if present if isinstance(obj.norm, pcolors.DiscreteNorm): value = obj.norm._norm.inverse(obj.norm(value)) # Determine text color based on background icolor = color if color is None: _, _, lum = utils.to_xyz(obj.cmap(obj.norm(value)), "hcl") icolor = "w" if lum < 50 else "k" # Create text label lab = self.text(x, y, fmt(value), color=icolor, size=fontsize, **kwargs) labs.append(lab) return labs def _add_collection_labels( self, obj, fmt, *, c=None, color=None, colors=None, size=None, fontsize=None, **kwargs, ): """ Add labels to pcolor boxes with support for shade-dependent text colors. Values are inferred from the unnormalized grid box color. """ # Parse input args # NOTE: This function also hides grid boxes filled with NaNs to avoid ugly # issue where edge colors surround NaNs. Should maybe move this somewhere else. obj.update_scalarmappable() # update 'edgecolors' list color = _not_none(c=c, color=color, colors=colors) fontsize = _not_none(size=size, fontsize=fontsize, default=rc["font.smallsize"]) kwargs.setdefault("ha", "center") kwargs.setdefault("va", "center") # Apply colors and hide edge colors for empty grids labs = [] array = obj.get_array() paths = obj.get_paths() edgecolors = inputs._to_numpy_array(obj.get_edgecolors()) if len(edgecolors) == 1: edgecolors = np.repeat(edgecolors, len(array), axis=0) for i, (path, value) in enumerate(zip(paths, array)): # Round to the number corresponding to the *color* rather than # the exact data value. Similar to contour label numbering. if value is ma.masked or not np.any(np.isfinite(value) == False): edgecolors[i, :] = 0 continue if isinstance(obj.norm, pcolors.DiscreteNorm): value = obj.norm._norm.inverse(obj.norm(value)) icolor = color if color is None: _, _, lum = utils.to_xyz(obj.cmap(obj.norm(value)), "hcl") icolor = "w" if lum < 50 else "k" bbox = path.get_extents() x = (bbox.xmin + bbox.xmax) / 2 y = (bbox.ymin + bbox.ymax) / 2 lab = self.text(x, y, fmt(value), color=icolor, size=fontsize, **kwargs) labs.append(lab) obj.set_edgecolors(edgecolors) return labs def _add_contour_labels( self, obj, cobj, fmt, *, c=None, color=None, colors=None, size=None, fontsize=None, inline_spacing=None, **kwargs, ): """ Add labels to contours with support for shade-dependent filled contour labels. Text color is inferred from filled contour object and labels are always drawn on unfilled contour object (otherwise errors crop up). """ # Parse input args zorder = max(3, obj.get_zorder() + 1) kwargs.setdefault("zorder", zorder) colors = _not_none(c=c, color=color, colors=colors) fontsize = _not_none(size=size, fontsize=fontsize, default=rc["font.smallsize"]) inline_spacing = _not_none(inline_spacing, 2.5) # Separate clabel args from text Artist args text_kw = {} clabel_keys = ("levels", "inline", "manual", "rightside_up", "use_clabeltext") for key in tuple(kwargs): # allow dict to change size if key not in clabel_keys: text_kw[key] = kwargs.pop(key) # Draw hidden additional contour for filled contour labels cobj = _not_none(cobj, obj) if obj.filled and colors is None: colors = [] for level in obj.levels: _, _, lum = utils.to_xyz(obj.cmap(obj.norm(level))) colors.append("w" if lum < 50 else "k") # Draw the labels labs = cobj.clabel( fmt=fmt, colors=colors, fontsize=fontsize, inline_spacing=inline_spacing, **kwargs, ) if labs is not None: # returns None if no contours for lab in labs: lab.update(text_kw) return labs def _add_error_bars( self, x, y, *_, distribution=None, default_barstds=False, default_boxstds=False, default_barpctiles=False, default_boxpctiles=False, default_marker=False, bars=None, boxes=None, barstd=None, barstds=None, barpctile=None, barpctiles=None, bardata=None, boxstd=None, boxstds=None, boxpctile=None, boxpctiles=None, boxdata=None, capsize=None, **kwargs, ): """ Add up to 2 error indicators: thick "boxes" and thin "bars". The ``default`` keywords toggle default range indicators when distributions are passed. """ # Parse input args # NOTE: Want to keep _add_error_bars() and _add_error_shading() separate. # But also want default behavior where some default error indicator is shown # if user requests means/medians only. Result is the below kludge. kwargs, vert = _get_vert(**kwargs) barstds = _not_none(bars=bars, barstd=barstd, barstds=barstds) boxstds = _not_none(boxes=boxes, boxstd=boxstd, boxstds=boxstds) barpctiles = _not_none(barpctile=barpctile, barpctiles=barpctiles) boxpctiles = _not_none(boxpctile=boxpctile, boxpctiles=boxpctiles) if distribution is not None and not any( typ + mode in key for key in kwargs for typ in ("shade", "fade") for mode in ("", "std", "pctile", "data") ): # ugly kludge to check for shading if all(_ is None for _ in (bardata, barstds, barpctiles)): barstds, barpctiles = default_barstds, default_barpctiles if all(_ is None for _ in (boxdata, boxstds, boxpctiles)): boxstds, boxpctiles = default_boxstds, default_boxpctiles showbars = any( _ is not None and _ is not False for _ in (barstds, barpctiles, bardata) ) showboxes = any( _ is not None and _ is not False for _ in (boxstds, boxpctiles, boxdata) ) # Error bar properties edgecolor = kwargs.get("edgecolor", rc["boxplot.whiskerprops.color"]) barprops = _pop_props(kwargs, "line", ignore="marker", prefix="bar") barprops["capsize"] = _not_none(capsize, rc["errorbar.capsize"]) barprops["linestyle"] = "none" barprops.setdefault("color", edgecolor) barprops.setdefault("zorder", 2.5) barprops.setdefault("linewidth", rc["boxplot.whiskerprops.linewidth"]) # Error box properties # NOTE: Includes 'markerfacecolor' and 'markeredgecolor' props boxprops = _pop_props(kwargs, "line", prefix="box") boxprops["capsize"] = 0 boxprops["linestyle"] = "none" boxprops.setdefault("color", barprops["color"]) boxprops.setdefault("zorder", barprops["zorder"]) boxprops.setdefault("linewidth", 4 * barprops["linewidth"]) # Box marker properties boxmarker = { key: boxprops.pop(key) for key in tuple(boxprops) if "marker" in key } # noqa: E501 boxmarker["c"] = _not_none(boxmarker.pop("markerfacecolor", None), "white") boxmarker["s"] = _not_none( boxmarker.pop("markersize", None), boxprops["linewidth"] ** 0.5 ) # noqa: E501 boxmarker["zorder"] = boxprops["zorder"] boxmarker["edgecolor"] = boxmarker.pop("markeredgecolor", None) boxmarker["linewidth"] = boxmarker.pop("markerlinewidth", None) if boxmarker.get("marker") is True: boxmarker["marker"] = "o" elif default_marker: boxmarker.setdefault("marker", "o") # Draw thin or thick error bars from distributions or explicit errdata # NOTE: Now impossible to make thin bar width different from cap width! # NOTE: Boxes must go after so scatter point can go on top sy = "y" if vert else "x" # yerr ex, ey = (x, y) if vert else (y, x) eobjs = [] if showbars: # noqa: E501 edata, _ = inputs._dist_range( y, distribution, stds=barstds, pctiles=barpctiles, errdata=bardata, stds_default=(-3, 3), pctiles_default=(0, 100), ) if edata is not None: obj = self.errorbar(ex, ey, **barprops, **{sy + "err": edata}) eobjs.append(obj) if showboxes: # noqa: E501 edata, _ = inputs._dist_range( y, distribution, stds=boxstds, pctiles=boxpctiles, errdata=boxdata, stds_default=(-1, 1), pctiles_default=(25, 75), ) if edata is not None: obj = self.errorbar(ex, ey, **boxprops, **{sy + "err": edata}) if boxmarker.get("marker", None): self.scatter(ex, ey, **boxmarker) eobjs.append(obj) kwargs["distribution"] = distribution return (*eobjs, kwargs) def _add_error_shading( self, x, y, *_, distribution=None, color_key="color", shade=None, shadestd=None, shadestds=None, shadepctile=None, shadepctiles=None, shadedata=None, fade=None, fadestd=None, fadestds=None, fadepctile=None, fadepctiles=None, fadedata=None, shadelabel=False, fadelabel=False, **kwargs, ): """ Add up to 2 error indicators: more opaque "shading" and less opaque "fading". """ kwargs, vert = _get_vert(**kwargs) shadestds = _not_none(shade=shade, shadestd=shadestd, shadestds=shadestds) fadestds = _not_none(fade=fade, fadestd=fadestd, fadestds=fadestds) shadepctiles = _not_none(shadepctile=shadepctile, shadepctiles=shadepctiles) fadepctiles = _not_none(fadepctile=fadepctile, fadepctiles=fadepctiles) drawshade = any( _ is not None and _ is not False for _ in (shadestds, shadepctiles, shadedata) ) drawfade = any( _ is not None and _ is not False for _ in (fadestds, fadepctiles, fadedata) ) # Shading properties shadeprops = _pop_props(kwargs, "patch", prefix="shade") shadeprops.setdefault("alpha", 0.4) shadeprops.setdefault("zorder", 1.5) shadeprops.setdefault("linewidth", rc["patch.linewidth"]) shadeprops.setdefault("edgecolor", "none") # Fading properties fadeprops = _pop_props(kwargs, "patch", prefix="fade") fadeprops.setdefault("zorder", shadeprops["zorder"]) fadeprops.setdefault("alpha", 0.5 * shadeprops["alpha"]) fadeprops.setdefault("linewidth", shadeprops["linewidth"]) fadeprops.setdefault("edgecolor", "none") # Get default color then apply to outgoing keyword args so # that plotting function will not advance to next cycler color. # TODO: More robust treatment of 'color' vs. 'facecolor' if ( drawshade and shadeprops.get("facecolor", None) is None or drawfade and fadeprops.get("facecolor", None) is None ): color = kwargs.get(color_key, None) if color is None: # add to outgoing color = kwargs[color_key] = self._get_lines.get_next_color() shadeprops.setdefault("facecolor", color) fadeprops.setdefault("facecolor", color) # Draw dark and light shading from distributions or explicit errdata eobjs = [] fill = self.fill_between if vert else self.fill_betweenx if drawfade: edata, label = inputs._dist_range( y, distribution, stds=fadestds, pctiles=fadepctiles, errdata=fadedata, stds_default=(-3, 3), pctiles_default=(0, 100), label=fadelabel, absolute=True, ) if edata is not None: synthetic = False eff_label = label if self._in_external_context() and ( eff_label is None or str(eff_label) in ("y", "ymin", "ymax") ): eff_label = "_ultraplot_fade" synthetic = True eobj = fill(x, *edata, label=eff_label, **fadeprops) if synthetic: try: setattr(eobj, "_ultraplot_synthetic", True) if hasattr(eobj, "set_label"): eobj.set_label("_ultraplot_fade") except Exception: pass for _obj in guides._iter_iterables(eobj): try: setattr(_obj, "_ultraplot_synthetic", True) if hasattr(_obj, "set_label"): _obj.set_label("_ultraplot_fade") except Exception: pass eobjs.append(eobj) if drawshade: edata, label = inputs._dist_range( y, distribution, stds=shadestds, pctiles=shadepctiles, errdata=shadedata, stds_default=(-2, 2), pctiles_default=(10, 90), label=shadelabel, absolute=True, ) if edata is not None: synthetic = False eff_label = label if self._in_external_context() and ( eff_label is None or str(eff_label) in ("y", "ymin", "ymax") ): eff_label = "_ultraplot_shade" synthetic = True eobj = fill(x, *edata, label=eff_label, **shadeprops) if synthetic: try: setattr(eobj, "_ultraplot_synthetic", True) if hasattr(eobj, "set_label"): eobj.set_label("_ultraplot_shade") except Exception: pass for _obj in guides._iter_iterables(eobj): try: setattr(_obj, "_ultraplot_synthetic", True) if hasattr(_obj, "set_label"): _obj.set_label("_ultraplot_shade") except Exception: pass eobjs.append(eobj) kwargs["distribution"] = distribution return (*eobjs, kwargs) def _fix_contour_edges(self, method, *args, **kwargs): """ Fix the filled contour edges by secretly adding solid contours with the same input data. """ # NOTE: This is used to provide an object that can be used by 'clabel' for # auto-labels. Filled contours create strange artifacts. # NOTE: Make the default 'line width' identical to one used for pcolor plots # rather than rc['contour.linewidth']. See mpl pcolor() source code if not any(key in kwargs for key in ("linewidths", "linestyles", "edgecolors")): kwargs["linewidths"] = 0 # for clabel kwargs.setdefault("linewidths", EDGEWIDTH) kwargs.pop("cmap", None) kwargs["colors"] = kwargs.pop("edgecolors", "k") return self._call_native(method, *args, **kwargs) def _fix_sticky_edges(self, objs, axis, *args, only=None): """ Fix sticky edges for the input artists using the minimum and maximum of the input coordinates. This is used to copy `bar` behavior to `area` and `lines`. """ for array in args: min_, max_ = inputs._safe_range(array) if min_ is None or max_ is None: continue for obj in guides._iter_iterables(objs): if only and not isinstance(obj, only): continue # e.g. ignore error bars convert = getattr(self, "convert_" + axis + "units") edges = getattr(obj.sticky_edges, axis) edges.extend(convert((min_, max_))) @staticmethod def _fix_patch_edges(obj, edgefix=None, **kwargs): """ Fix white lines between between filled patches and fix issues with colormaps that are transparent. If keyword args passed by user include explicit edge properties then we skip this step. """ # NOTE: Use default edge width used for pcolor grid box edges. This is thick # enough to hide lines but thin enough to not add 'nubs' to corners of boxes. # See: https://github.com/jklymak/contourfIssues # See: https://stackoverflow.com/q/15003353/4970632 edgefix = _not_none(edgefix, rc.edgefix, True) linewidth = EDGEWIDTH if edgefix is True else 0 if edgefix is False else edgefix if not linewidth: return keys = ("linewidth", "linestyle", "edgecolor") # patches and collections if any(key + suffix in kwargs for key in keys for suffix in ("", "s")): return rasterized = obj.get_rasterized() if isinstance(obj, martist.Artist) else False if rasterized: return # Skip when cmap has transparency if hasattr(obj, "get_alpha"): # collections and contour sets use singular alpha = obj.get_alpha() if alpha is not None and alpha < 1: return if isinstance(obj, mcm.ScalarMappable): cmap = obj.cmap if not cmap._isinit: cmap._init() if not all(cmap._lut[:-1, 3] == 1): # skip for cmaps with transparency return # Apply fixes # NOTE: This also covers TriContourSet returned by tricontour if isinstance(obj, mcontour.ContourSet): if obj.filled: obj.set_linestyle("-") obj.set_linewidth(linewidth) obj.set_edgecolor("face") elif isinstance(obj, mcollections.Collection): # e.g. QuadMesh, PolyCollection obj.set_linewidth(linewidth) obj.set_edgecolor("face") elif isinstance(obj, mpatches.Patch): # e.g. Rectangle obj.set_linewidth(linewidth) obj.set_edgecolor(obj.get_facecolor()) elif np.iterable(obj): # e.g. silent_list of BarContainer for element in obj: PlotAxes._fix_patch_edges(element, edgefix=edgefix) else: warnings._warn_ultraplot( f"Unexpected obj {obj} passed to _fix_patch_edges." ) @contextlib.contextmanager def _keep_grid_bools(self): """ Preserve the gridline booleans during the operation. This prevents `pcolor` methods from disabling grids (mpl < 3.5) and emitting warnings (mpl >= 3.5). """ # NOTE: Modern matplotlib uses _get_axis_list() but this is only to support # Axes3D which PlotAxes does not subclass. Safe to use xaxis and yaxis. bools = [] for axis, which in itertools.product( (self.xaxis, self.yaxis), ("major", "minor") ): kw = getattr(axis, f"_{which}_tick_kw", {}) bools.append(kw.get("gridOn", None)) kw["gridOn"] = False # prevent deprecation warning yield for b, (axis, which) in zip(bools, itertools.product("xy", ("major", "minor"))): if b is not None: self.grid(b, axis=axis, which=which) def _inbounds_extent(self, *, inbounds=None, **kwargs): """ Capture the `inbounds` keyword arg and return data limit extents if it is ``True``. Otherwise return ``None``. When ``_inbounds_xylim`` gets ``None`` it will silently exit. """ extents = None inbounds = _not_none(inbounds, rc["axes.inbounds"]) if inbounds: extents = list(self.dataLim.extents) # ensure modifiable return kwargs, extents def _inbounds_vlim(self, x, y, z, *, to_centers=False): """ Restrict the sample data used for automatic `vmin` and `vmax` selection based on the existing x and y axis limits. """ # Get masks # WARNING: Experimental, seems robust but this is not mission-critical so # keep this in a try-except clause for now. However *internally* we should # not reach this block unless everything is an array so raise that error. xmask = ymask = None if self._name != "cartesian": return z # TODO: support geographic projections when input is PlateCarree() if not all(getattr(a, "ndim", None) in (1, 2) for a in (x, y, z)): raise ValueError("Invalid input coordinates. Must be 1D or 2D arrays.") try: # Get centers and masks if to_centers and z.ndim == 2: x, y = inputs._to_centers(x, y, z) if not self.get_autoscalex_on(): xlim = self.get_xlim() xmask = (x >= min(xlim)) & (x <= max(xlim)) if not self.get_autoscaley_on(): ylim = self.get_ylim() ymask = (y >= min(ylim)) & (y <= max(ylim)) # Get subsample if xmask is not None and ymask is not None: z = ( z[np.ix_(ymask, xmask)] if z.ndim == 2 and xmask.ndim == 1 else z[ymask & xmask] ) # noqa: E501 elif xmask is not None: z = z[:, xmask] if z.ndim == 2 and xmask.ndim == 1 else z[xmask] elif ymask is not None: z = z[ymask, :] if z.ndim == 2 and ymask.ndim == 1 else z[ymask] return z except Exception as err: warnings._warn_ultraplot( "Failed to restrict automatic colormap normalization " f"to in-bounds data only. Error message: {err}" ) return z def _inbounds_xylim(self, extents, x, y, **kwargs): """ Restrict the `dataLim` to exclude out-of-bounds data when x (y) limits are fixed and we are determining default y (x) limits. This modifies the mutable input `extents` to support iteration over columns. """ # WARNING: This feature is still experimental. But seems obvious. Matplotlib # updates data limits in ad hoc fashion differently for each plotting command # but since ultraplot standardizes inputs we can easily use them for dataLim. if extents is None: return if self._name != "cartesian": return if not x.size or not y.size: return kwargs, vert = _get_vert(**kwargs) if not vert: x, y = y, x trans = self.dataLim autox, autoy = self.get_autoscalex_on(), self.get_autoscaley_on() try: if autoy and not autox and x.shape == y.shape: # Reset the y data limits xmin, xmax = sorted(self.get_xlim()) mask = (x >= xmin) & (x <= xmax) ymin, ymax = inputs._safe_range(inputs._safe_mask(mask, y)) convert = self.convert_yunits # handle datetime, pint units if ymin is not None: trans.y0 = extents[1] = min(convert(ymin), extents[1]) if ymax is not None: trans.y1 = extents[3] = max(convert(ymax), extents[3]) getattr(self, "_request_autoscale_view", self.autoscale_view)() if autox and not autoy and y.shape == x.shape: # Reset the x data limits ymin, ymax = sorted(self.get_ylim()) mask = (y >= ymin) & (y <= ymax) xmin, xmax = inputs._safe_range(inputs._safe_mask(mask, x)) convert = self.convert_xunits # handle datetime, pint units if xmin is not None: trans.x0 = extents[0] = min(convert(xmin), extents[0]) if xmax is not None: trans.x1 = extents[2] = max(convert(xmax), extents[2]) getattr(self, "_request_autoscale_view", self.autoscale_view)() except Exception as err: warnings._warn_ultraplot( "Failed to restrict automatic y (x) axis limit algorithm to " f"data within locked x (y) limits only. Error message: {err}" ) def _parse_1d_args(self, x, *ys, **kwargs): """ Interpret positional arguments for all 1D plotting commands. """ # Standardize values zerox = not ys if zerox or all(y is None for y in ys): # pad with remaining Nones x, *ys = None, x, *ys[1:] if len(ys) == 2: # 'lines' or 'fill_between' if ys[1] is None: ys = (np.array([0.0]), ys[0]) # user input 1 or 2 positional args elif ys[0] is None: ys = (np.array([0.0]), ys[1]) # user input keyword 'y2' but no y1 if any(y is None for y in ys): raise ValueError("Missing required data array argument.") ys = tuple(map(inputs._to_duck_array, ys)) if x is not None: x = inputs._to_duck_array(x) x, *ys, kwargs = self._parse_1d_format(x, *ys, zerox=zerox, **kwargs) # Geographic corrections if self._name == "cartopy" and isinstance( kwargs.get("transform"), PlateCarree ): # noqa: E501 x, *ys = inputs._geo_cartopy_1d(x, *ys) elif self._name == "basemap" and kwargs.get("latlon", None): xmin, xmax = self._lonaxis.get_view_interval() x, *ys = inputs._geo_basemap_1d(x, *ys, xmin=xmin, xmax=xmax) return (x, *ys, kwargs) def _parse_1d_format( self, x, *ys, zerox=False, autox=True, autoy=True, autoformat=None, autoreverse=True, autolabels=True, autovalues=False, autoguide=True, label=None, labels=None, value=None, values=None, **kwargs, ): """ Try to retrieve default coordinates from array-like objects and apply default formatting. Also update the keyword arguments. """ # Parse input y = max(ys, key=lambda y: y.size) # find a non-scalar y for inferring metadata autox = autox and not zerox # so far just relevant for hist() autoformat = _not_none(autoformat, rc["autoformat"]) kwargs, vert = _get_vert(**kwargs) legend_kw_labels = _not_none( kwargs.get("legend_kw", {}).pop("labels", None), ) colorbar_kw_labels = _not_none( kwargs.get("colorbar_kw", {}).pop("values", None), ) # Track whether the user explicitly provided labels/values so we can # preserve them even when autolabels is disabled. _user_labels_explicit = any( v is not None for v in ( label, labels, value, values, legend_kw_labels, colorbar_kw_labels, ) ) labels = _not_none( label=label, labels=labels, value=value, values=values, legend_kw_labels=legend_kw_labels, colorbar_kw_values=colorbar_kw_labels, ) # Retrieve the x coords # NOTE: Where columns represent distributions, like for box and violinplot or # where we use 'means' or 'medians', columns coords (axis 1) are 'x' coords. # Otherwise, columns represent e.g. lines and row coords (axis 0) are 'x' # coords. Exception is passing "ragged arrays" to boxplot and violinplot. dists = any(kwargs.get(s) for s in ("mean", "means", "median", "medians")) raggd = any(getattr(y, "dtype", None) == "object" for y in ys) xaxis = 0 if raggd else 1 if dists or not autoy else 0 if autox and x is None: x = inputs._meta_labels(y, axis=xaxis) # use the first one # Retrieve the labels. We only want default legend labels if this is an # object with 'title' metadata and/or the coords are string. # WARNING: Confusing terminology differences here -- for box and violin plots # labels refer to indices along x axis. if autolabels and labels is None: laxis = 0 if not autox and not autoy else xaxis if not autoy else xaxis + 1 if laxis >= y.ndim: labels = inputs._meta_title(y) else: labels = inputs._meta_labels(y, axis=laxis, always=False) notitle = not inputs._meta_title(labels) if labels is None: pass elif notitle and not any(isinstance(_, str) for _ in labels): labels = None # Apply the labels or values if labels is not None: if autovalues or (value is not None or values is not None): kwargs["values"] = inputs._to_numpy_array(labels) elif autolabels or _user_labels_explicit: kwargs["labels"] = inputs._to_numpy_array(labels) # Apply title for legend or colorbar that uses the labels or values if autoguide and autoformat: title = inputs._meta_title(labels) if title: # safely update legend_kw and colorbar_kw guides._add_guide_kw("legend", kwargs, title=title) guides._add_guide_kw("colorbar", kwargs, title=title) # Apply the basic x and y settings autox = autox and self._name == "cartesian" autoy = autoy and self._name == "cartesian" sx, sy = "xy" if vert else "yx" kw_format = {} if autox and autoformat: # 'x' axis title = inputs._meta_title(x) if title: axis = getattr(self, sx + "axis") if axis.isDefault_label: kw_format[sx + "label"] = title if autoy and autoformat: # 'y' axis sy = sx if zerox else sy # hist() 'y' values are along 'x' axis title = inputs._meta_title(y) if title: axis = getattr(self, sy + "axis") if axis.isDefault_label: kw_format[sy + "label"] = title # Convert string-type coordinates to indices # NOTE: This should even allow qualitative string input to hist() if autox: x, kw_format = inputs._meta_coords(x, which=sx, **kw_format) if autoy: *ys, kw_format = inputs._meta_coords(*ys, which=sy, **kw_format) if autox and autoreverse and inputs._is_descending(x): if getattr(self, f"get_autoscale{sx}_on")(): kw_format[sx + "reverse"] = True # Finally apply formatting and strip metadata # WARNING: Most methods that accept 2D arrays use columns of data, but when # pandas DataFrame specifically is passed to hist, boxplot, or violinplot, rows # of data assumed! Converting to ndarray necessary. if kw_format: self.format(**kw_format) ys = tuple(map(inputs._to_numpy_array, ys)) if x is not None: # pie() and hist() x = inputs._to_numpy_array(x) return (x, *ys, kwargs) def _parse_2d_args( self, x, y, *zs, globe=False, edges=False, allow1d=False, transpose=None, order=None, **kwargs, ): """ Interpret positional arguments for all 2D plotting commands. """ # Standardize values # NOTE: Functions pass two 'zs' at most right now if all(z is None for z in zs): x, y, zs = None, None, (x, y)[: len(zs)] if any(z is None for z in zs): raise ValueError("Missing required data array argument(s).") zs = tuple(inputs._to_duck_array(z, strip_units=True) for z in zs) if x is not None: x = inputs._to_duck_array(x) if y is not None: y = inputs._to_duck_array(y) if order is not None: if not isinstance(order, str) or order not in "CF": raise ValueError(f"Invalid order={order!r}. Options are 'C' or 'F'.") transpose = _not_none( transpose=transpose, transpose_order=bool("CF".index(order)) ) if transpose: zs = tuple(z.T for z in zs) if x is not None: x = x.T if y is not None: y = y.T x, y, *zs, kwargs = self._parse_2d_format(x, y, *zs, **kwargs) if edges: # NOTE: These functions quitely pass through 1D inputs, e.g. barb data x, y = inputs._to_edges(x, y, zs[0]) else: x, y = inputs._to_centers(x, y, zs[0]) # Geographic corrections if allow1d: pass elif self._name == "cartopy" and isinstance( kwargs.get("transform"), PlateCarree ): # noqa: E501 x, y, *zs = inputs._geo_cartopy_2d(x, y, *zs, globe=globe) elif self._name == "basemap" and kwargs.get("latlon", None): xmin, xmax = self._lonaxis.get_view_interval() x, y, *zs = inputs._geo_basemap_2d( x, y, *zs, xmin=xmin, xmax=xmax, globe=globe ) # noqa: E501 x, y = np.meshgrid(x, y) # WARNING: required always return (x, y, *zs, kwargs) def _parse_2d_format( self, x, y, *zs, autoformat=None, autoguide=True, autoreverse=True, **kwargs ): """ Try to retrieve default coordinates from array-like objects and apply default formatting. Also apply optional transpose and update the keyword arguments. """ # Retrieve coordinates autoformat = _not_none(autoformat, rc["autoformat"]) if x is None and y is None: z = zs[0] if z.ndim == 1: x = inputs._meta_labels(z, axis=0) y = np.zeros(z.shape) # default barb() and quiver() behavior in mpl else: x = inputs._meta_labels(z, axis=1) y = inputs._meta_labels(z, axis=0) # Apply labels and XY axis settings if self._name == "cartesian": # Apply labels # NOTE: Do not overwrite existing labels! kw_format = {} if autoformat: for s, d in zip("xy", (x, y)): title = inputs._meta_title(d) if title: axis = getattr(self, s + "axis") if axis.isDefault_label: kw_format[s + "label"] = title # Handle string-type coordinates x, kw_format = inputs._meta_coords(x, which="x", **kw_format) y, kw_format = inputs._meta_coords(y, which="y", **kw_format) for s, d in zip("xy", (x, y)): if autoreverse and inputs._is_descending(d): if getattr(self, f"get_autoscale{s}_on")(): kw_format[s + "reverse"] = True # Apply formatting if kw_format: self.format(**kw_format) # Apply title for legend or colorbar if autoguide and autoformat: title = inputs._meta_title(zs[0]) if title: # safely update legend_kw and colorbar_kw guides._add_guide_kw("legend", kwargs, title=title) guides._add_guide_kw("colorbar", kwargs, title=title) # Finally strip metadata x = inputs._to_numpy_array(x) y = inputs._to_numpy_array(y) zs = tuple(map(inputs._to_numpy_array, zs)) return (x, y, *zs, kwargs) def _parse_color(self, x, y, c, *, apply_cycle=True, infer_rgb=False, **kwargs): """ Parse either a colormap or color cycler. Colormap will be discrete and fade to subwhite luminance by default. Returns a HEX string if needed so we don't get ambiguous color warnings. Used with scatter, streamplot, quiver, barbs. """ # NOTE: This function is positioned above the _parse_cmap and _parse_cycle # functions and helper functions. parsers = (self._parse_cmap, *self._level_parsers) if c is None or mcolors.is_color_like(c): if infer_rgb and c is not None and (isinstance(c, str) and c != "none"): c = pcolors.to_hex(c) # avoid scatter() ambiguous color warning if apply_cycle: # False for scatter() so we can wait to get correct 'N' kwargs = self._parse_cycle(**kwargs) else: c = np.atleast_1d(c) # should only have effect on 'scatter' input if infer_rgb and ( inputs._is_categorical(c) or c.ndim == 2 and c.shape[1] in (3, 4) ): # noqa: E501 c = list(map(pcolors.to_hex, c)) # avoid iterating over columns else: center_levels = kwargs.pop("center_levels", None) kwargs = self._parse_cmap( x, y, c, plot_lines=True, default_discrete=False, center_levels=center_levels, **kwargs, ) # noqa: E501 parsers = (self._parse_cycle,) pop = _pop_params(kwargs, *parsers, ignore_internal=True) if pop: warnings._warn_ultraplot(f"Ignoring unused keyword arg(s): {pop}") return (c, kwargs) @warnings._rename_kwargs("0.6.0", centers="values") def _parse_cmap( self, *args, cmap=None, cmap_kw=None, c=None, color=None, colors=None, norm=None, norm_kw=None, extend=None, vmin=None, vmax=None, discrete=None, default_cmap=None, default_discrete=True, skip_autolev=False, min_levels=None, plot_lines=False, plot_contours=False, center_levels=None, **kwargs, ): """ Parse colormap and normalizer arguments. Parameters ---------- c, color, colors : sequence of color-spec, optional Build a `DiscreteColormap` from the input color(s). cmap, cmap_kw : optional Colormap specs. norm, norm_kw : optional Normalize specs. extend : optional The colormap extend setting. vmin, vmax : float, optional The normalization range. sequential, diverging, cyclic, qualitative : bool, optional Toggle various colormap types. discrete : bool, optional Whether to apply `DiscreteNorm` to the colormap. default_discrete : bool, optional The default `discrete`. Depends on plotting method. skip_autolev : bool, optional Whether to skip automatic level generation. min_levels : int, optional The minimum number of valid levels. 1 for line contour plots 2 otherwise. plot_lines : bool, optional Whether these are lines. If so the default monochromatic luminance is 90. plot_contours : bool, optional Whether these are contours. If so then a discrete of `True` is required. """ # Parse keyword args cmap_kw = cmap_kw or {} norm_kw = norm_kw or {} # If norm is given we use it to set vmin and vmax if (vmin is not None or vmax is not None) and norm is not None: raise ValueError("If 'norm' is given, 'vmin' and 'vmax' must not be set.") if isinstance(norm, mcolors.Normalize): vmin = norm.vmin vmax = norm.vmax vmin = _not_none(vmin=vmin, norm_kw_vmin=norm_kw.pop("vmin", None)) vmax = _not_none(vmax=vmax, norm_kw_vmax=norm_kw.pop("vmax", None)) extend = _not_none(extend, "neither") colors = _not_none(c=c, color=color, colors=colors) # in case untranslated modes = { key: kwargs.pop(key, None) for key in ("sequential", "diverging", "cyclic", "qualitative") } # noqa: E501 trues = {key: b for key, b in modes.items() if b} if len(trues) > 1: # noqa: E501 warnings._warn_ultraplot( f"Conflicting colormap arguments: {trues!r}. Using the first one." ) for key in tuple(trues)[1:]: del trues[key] modes[key] = None # Create user-input colormap and potentially disable autodiverging # NOTE: Let people use diverging=False with diverging cmaps because some # use them (wrongly IMO but to each their own) for increased color contrast. # WARNING: Previously 'colors' set the edgecolors. To avoid all-black # colormap make sure to ignore 'colors' if 'cmap' was also passed. # WARNING: Previously tried setting number of levels to len(colors), but this # makes single-level single-color contour plots, and since _parse_level_num is # only generates approximate level counts, the idea failed anyway. Users should # pass their own levels to avoid truncation/cycling in these very special cases. autodiverging = rc["cmap.autodiverging"] if colors is not None: if cmap is not None: warnings._warn_ultraplot( f"you specified both cmap={cmap!s} and the qualitative-colormap " f"colors={colors!r}. Ignoring 'colors'. If you meant to specify " f"the edge color please use e.g. edgecolor={colors!r} instead." ) else: if mcolors.is_color_like(colors): colors = [colors] # RGB[A] tuple possibly cmap = colors = np.atleast_1d(colors) cmap_kw["listmode"] = "discrete" if cmap is not None: if plot_lines: cmap_kw["default_luminance"] = constructor.DEFAULT_CYCLE_LUMINANCE cmap = constructor.Colormap(cmap, **cmap_kw) name = re.sub(r"\A_*(.*?)(?:_r|_s|_copy)*\Z", r"\1", cmap.name.lower()) if not any(name in opts for opts in pcolors.CMAPS_DIVERGING.items()): autodiverging = False # avoid auto-truncation of sequential colormaps # Force default options in special cases # NOTE: Delay application of 'sequential', 'diverging', 'cyclic', 'qualitative' # until after level generation so 'diverging' can be automatically applied. if "cyclic" in trues or getattr(cmap, "_cyclic", None): if extend is not None and extend != "neither": warnings._warn_ultraplot( f"Cyclic colormaps require extend='neither'. Ignoring extend={extend!r}" # noqa: E501 ) extend = "neither" if "qualitative" in trues or isinstance(cmap, pcolors.DiscreteColormap): if discrete is not None and not discrete: # noqa: E501 warnings._warn_ultraplot( "Qualitative colormaps require discrete=True. Ignoring discrete=False." # noqa: E501 ) discrete = True if plot_contours: if discrete is not None and not discrete: warnings._warn_ultraplot( "Contoured plots require discrete=True. Ignoring discrete=False." ) discrete = True keys = ("levels", "values", "locator", "negative", "positive", "symmetric") if any(key in kwargs for key in keys): # override discrete = _not_none(discrete, True) else: # use global boolean rc['cmap.discrete'] or command-specific default discrete = _not_none(discrete, rc["cmap.discrete"], default_discrete) # Determine the appropriate 'vmin', 'vmax', and/or 'levels' # NOTE: Unlike xarray, but like matplotlib, vmin and vmax only approximately # determine level range. Levels are selected with Locator.tick_values(). levels = None # unused isdiverging = False if not discrete and not skip_autolev: vmin, vmax, kwargs = self._parse_level_lim( *args, vmin=vmin, vmax=vmax, **kwargs ) if autodiverging and vmin is not None and vmax is not None: if abs(np.sign(vmax) - np.sign(vmin)) == 2: isdiverging = True if discrete: levels, vmin, vmax, norm, norm_kw, kwargs = self._parse_level_vals( *args, vmin=vmin, vmax=vmax, norm=norm, norm_kw=norm_kw, extend=extend, min_levels=min_levels, center_levels=center_levels, skip_autolev=skip_autolev, **kwargs, ) if autodiverging and levels is not None: _, counts = np.unique(np.sign(levels), return_counts=True) if counts[counts > 1].size > 1: isdiverging = True if not trues and isdiverging and modes["diverging"] is None: trues["diverging"] = modes["diverging"] = True # Create the continuous normalizer. norm = _not_none(norm, "div" if "diverging" in trues else "linear") if isinstance(norm, mcolors.Normalize): norm.vmin, norm.vmax = vmin, vmax else: norm = constructor.Norm(norm, vmin=vmin, vmax=vmax, **norm_kw) isdiverging = autodiverging and isinstance(norm, pcolors.DivergingNorm) if not trues and isdiverging and modes["diverging"] is None: trues["diverging"] = modes["diverging"] = True # Create the final colormap if cmap is None: if default_cmap is not None: # used internally cmap = default_cmap elif trues: cmap = rc["cmap." + tuple(trues)[0]] else: cmap = rc["image.cmap"] cmap = constructor.Colormap(cmap, **cmap_kw) # Create the discrete normalizer # Then finally warn and remove unused args if levels is not None: norm, cmap, kwargs = self._parse_level_norm( levels, norm, cmap, center_levels=center_levels, extend=extend, min_levels=min_levels, **kwargs, ) params = _pop_params(kwargs, *self._level_parsers, ignore_internal=True) if "N" in params: # use this for lookup table N instead of levels N cmap = cmap.copy(N=params.pop("N")) if params: warnings._warn_ultraplot(f"Ignoring unused keyword args(s): {params}") # Update outgoing args # NOTE: ContourSet natively stores 'extend' on the result but for other # classes we need to hide it on the object. kwargs.update({"cmap": cmap, "norm": norm}) if plot_contours: kwargs.update({"levels": levels, "extend": extend}) else: guides._add_guide_kw("colorbar", kwargs, extend=extend) return kwargs def _parse_cycle( self, ncycle=None, *, cycle=None, cycle_kw=None, cycle_manually=None, return_cycle=False, **kwargs, ): """ Parse property cycle-related arguments. Parameters ---------- ncycle : int, optional The number of samples to draw for the cycle. cycle : cycle-spec, optional The property cycle specifier. cycle_kw : dict-like, optional The property cycle keyword arguments cycle_manually : dict-like, optional Mapping of property cycle keys to plotting function keys. Used to translate property cycle line properties to scatter properties. return_cycle : bool, optional Whether to simply return the property cycle or apply it. The cycle is only applied (and therefore reset) if it differs from the current one. """ cycle_kw = cycle_kw or {} # Ignore singular column plotting if ncycle != 1: cycle_kw.setdefault("N", ncycle) cycle_manually = cycle_manually or {} # Match-case for cycle resolution match cycle: case None if not cycle_kw: resolved_cycle = None case True: resolved_cycle = constructor.Cycle(rc["axes.prop_cycle"]) case constructor.Cycle(): resolved_cycle = constructor.Cycle(cycle, **cycle_kw) case str() if cycle.lower() == "none": resolved_cycle = None case str() | int(): resolved_cycle = constructor.Cycle(cycle, **cycle_kw) case _ if isinstance(cycle, Iterable): resolved_cycle = constructor.Cycle(cycle, **cycle_kw) case _: resolved_cycle = None # Ignore cycle for single-column plotting unless cycle is different if resolved_cycle and resolved_cycle != self._active_cycle: self.set_prop_cycle(resolved_cycle) # Apply manual cycle properties if cycle_manually: current_prop = self._get_lines._cycler_items[self._get_lines._idx] self._get_lines._idx = (self._get_lines._idx + 1) % len(self._active_cycle) for prop, key in cycle_manually.items(): if kwargs.get(key) is None and prop in current_prop: value = current_prop[prop] kwargs[key] = pcolors.to_hex(value) if key == "c" else value # Return or apply cycle if return_cycle: return resolved_cycle, kwargs return kwargs def _parse_level_lim( self, *args, vmin=None, vmax=None, robust=None, inbounds=None, negative=None, positive=None, symmetric=None, to_centers=False, **kwargs, ): """ Return a suitable vmin and vmax based on the input data. Parameters ---------- *args The sample data. vmin, vmax : float, optional The user input minimum and maximum. robust : bool, optional Whether to limit the default range to exclude outliers. inbounds : bool, optional Whether to filter to in-bounds data. negative, positive, symmetric : bool, optional Whether limits should be negative, positive, or symmetric. to_centers : bool, optional Whether to convert coordinates to 'centers'. Returns ------- vmin, vmax : float The minimum and maximum. **kwargs Unused arguemnts. """ # Parse vmin and vmax automin = vmin is None automax = vmax is None if not automin and not automax: return vmin, vmax, kwargs # Parse input args inbounds = _not_none(inbounds, rc["cmap.inbounds"]) robust = _not_none(robust, rc["cmap.robust"], False) robust = 96 if robust is True else 100 if robust is False else robust robust = np.atleast_1d(robust) if robust.size == 1: pmin, pmax = 50 + 0.5 * np.array([-robust.item(), robust.item()]) elif robust.size == 2: pmin, pmax = robust.flat # pull out of array else: raise ValueError( f"Unexpected robust={robust!r}. Must be bool, float, or 2-tuple." ) # noqa: E501 # Get sample data # NOTE: Critical to use _to_numpy_array here because some # commands are unstandardized. # NOTE: Try to get reasonable *count* levels for hexbin/hist2d, but in general # have no way to select nice ones a priori (why we disable discretenorm). # NOTE: Currently we only ever use this function with *single* array input # but in future could make this public as a way for users (me) to get # automatic synced contours for a bunch of arrays in a grid. vmins, vmaxs = [], [] if len(args) > 2: x, y, *zs = args else: x, y, *zs = None, None, *args for z in zs: if z is None: # e.g. empty scatter color continue if z.ndim > 2: # e.g. imshow data continue z = inputs._to_numpy_array(z) if inbounds and x is not None and y is not None: # ignore if None coords z = self._inbounds_vlim(x, y, z, to_centers=to_centers) imin, imax = inputs._safe_range(z, pmin, pmax) if automin and imin is not None: vmins.append(imin) if automax and imax is not None: vmaxs.append(imax) if automin: vmin = min(vmins, default=0) if automax: vmax = max(vmaxs, default=1) # Apply modifications # NOTE: This is also applied to manual input levels lists in _parse_level_vals if negative: if automax: vmax = 0 else: warnings._warn_ultraplot( f"Incompatible arguments vmax={vmax!r} and negative=True. " "Ignoring the latter." ) if positive: if automin: vmin = 0 else: warnings._warn_ultraplot( f"Incompatible arguments vmin={vmin!r} and positive=True. " "Ignoring the latter." ) if symmetric: if automin and not automax: vmin = -vmax elif automax and not automin: vmax = -vmin elif automin and automax: vmin, vmax = -np.max(np.abs((vmin, vmax))), np.max(np.abs((vmin, vmax))) else: warnings._warn_ultraplot( f"Incompatible arguments vmin={vmin!r}, vmax={vmax!r}, and " "symmetric=True. Ignoring the latter." ) return vmin, vmax, kwargs def _parse_level_num( self, *args, levels=None, locator=None, locator_kw=None, vmin=None, vmax=None, norm=None, norm_kw=None, extend=None, symmetric=None, center_levels=None, **kwargs, ): """ Return a suitable level list given the input data, normalizer, locator, and vmin and vmax. Parameters ---------- *args The sample data. Passed to `_parse_level_lim`. levels : int The approximate number of levels. locator, locator_kw The tick locator used to draw levels. vmin, vmax : float, optional The minimum and maximum values passed to the tick locator. norm, norm_kw : optional The continuous normalizer. Affects the default locator used to draw levels. extend : str, optional The extend setting. Affects level trimming settings. symmetric : bool, optional Whether the resulting levels should be symmetric about zero. Returns ------- levels : list of float The level edges. **kwargs Unused arguments. """ # Input args # NOTE: Some of this is adapted from the hidden contour.ContourSet._autolev # NOTE: We use 'symmetric' with MaxNLocator to ensure boundaries include a # zero level but may trim many of these below. norm_kw = norm_kw or {} locator_kw = locator_kw or {} extend = _not_none(extend, "neither") levels = _not_none(levels, rc["cmap.levels"]) center_levels = _not_none(center_levels, rc["colorbar.center_levels"]) vmin = _not_none(vmin=vmin, norm_kw_vmin=norm_kw.pop("vmin", None)) vmax = _not_none(vmax=vmax, norm_kw_vmax=norm_kw.pop("vmax", None)) norm = constructor.Norm(norm or "linear", **norm_kw) symmetric = _not_none( symmetric=symmetric, locator_kw_symmetric=locator_kw.pop("symmetric", None), default=False, ) # Get default locator from input norm # NOTE: This normalizer is only temporary for inferring level locs norm = constructor.Norm(norm or "linear", **norm_kw) if locator is not None: locator = constructor.Locator(locator, **locator_kw) elif isinstance(norm, mcolors.LogNorm): locator = mticker.LogLocator(**locator_kw) elif isinstance(norm, mcolors.SymLogNorm): for key, default in (("base", 10), ("linthresh", 1)): val = _not_none( getattr(norm, key, None), getattr(norm, "_" + key, None), default ) # noqa: E501 locator_kw.setdefault(key, val) locator = mticker.SymmetricalLogLocator(**locator_kw) else: locator_kw["symmetric"] = symmetric locator = mticker.MaxNLocator(levels, min_n_ticks=1, **locator_kw) # Get default level locations nlevs = levels automin = vmin is None automax = vmax is None vmin, vmax, kwargs = self._parse_level_lim( *args, vmin=vmin, vmax=vmax, symmetric=symmetric, **kwargs ) try: levels = locator.tick_values(vmin, vmax) except TypeError: # e.g. due to datetime arrays return None, kwargs except RuntimeError: # too-many-ticks error levels = np.linspace(vmin, vmax, levels) # TODO: _autolev used N + 1 # Possibly trim levels far outside of 'vmin' and 'vmax' # NOTE: This part is mostly copied from matplotlib _autolev if not symmetric: i0, i1 = 0, len(levels) # defaults (under,) = np.where(levels < vmin) if len(under): i0 = under[-1] if not automin or extend in ("min", "both"): i0 += 1 # permit out-of-bounds data (over,) = np.where(levels > vmax) if len(over): i1 = over[0] + 1 if len(over) else len(levels) if not automax or extend in ("max", "both"): i1 -= 1 # permit out-of-bounds data if i1 - i0 < 3: i0, i1 = 0, len(levels) # revert levels = levels[i0:i1] # Compare the no. of levels we got (levels) to what we wanted (nlevs) # If we wanted more than 2 times the result, then add nn - 1 extra # levels in-between the returned levels in normalized space (e.g. LogNorm). nn = nlevs // len(levels) if nn >= 2: olevels = norm(levels) nlevels = [] for i in range(len(levels) - 1): l1, l2 = olevels[i], olevels[i + 1] nlevels.extend(np.linspace(l1, l2, nn + 1)[:-1]) nlevels.append(olevels[-1]) levels = norm.inverse(nlevels) # Center the bin edges around the center of the bin # rather than its edges if center_levels: # Shift the entire range but correct the range # later width = np.diff(levels)[0] levels -= width * 0.5 # Add another bin edge at the width levels = np.append(levels, levels[-1] + width * np.sign(levels[-1])) return levels, kwargs def _parse_level_vals( self, *args, N=None, levels=None, values=None, extend=None, positive=False, negative=False, nozero=False, norm=None, norm_kw=None, skip_autolev=False, min_levels=None, center_levels=None, **kwargs, ): """ Return levels resulting from a wide variety of keyword options. Parameters ---------- *args The sample data. Passed to `_parse_level_lim`. N Shorthand for `levels`. levels : int or sequence of float, optional The levels list or (approximate) number of levels to create. values : int or sequence of float, optional The level center list or (approximate) number of level centers to create. positive, negative, nozero : bool, optional Whether to remove out non-positive, non-negative, and zero-valued levels. The latter is useful for single-color contour plots. norm, norm_kw : optional Passed to `Norm`. Used to possbily infer levels or to convert values. skip_autolev : bool, optional Whether to skip automatic level generation. min_levels : int, optional The minimum number of levels allowed. Returns ------- levels : list of float The level edges. **kwargs Unused arguments. """ # Helper function that restricts levels # NOTE: This should have no effect if levels were generated automatically. # However want to apply these to manual-input levels as well. def _restrict_levels(levels): kw = {} levels = np.asarray(levels) if len(levels) > 2: kw["atol"] = 1e-5 * np.min(np.diff(levels)) if nozero: levels = levels[~np.isclose(levels, 0, **kw)] if positive: levels = levels[(levels > 0) | np.isclose(levels, 0, **kw)] if negative: levels = levels[(levels < 0) | np.isclose(levels, 0, **kw)] return levels # Helper function to sanitize input levels # NOTE: Include special case where color levels are referenced by string labels def _sanitize_levels(key, array, minsize): if np.iterable(array): array, _ = pcolors._sanitize_levels(array, minsize) elif isinstance(array, Integral): pass elif array is not None: raise ValueError(f"Invalid {key}={array}. Must be list or integer.") if isinstance(norm, (mcolors.BoundaryNorm, pcolors.SegmentedNorm)): if isinstance(array, Integral): warnings._warn_ultraplot( f"Ignoring {key}={array}. Using norm={norm!r} {key} instead." ) array = norm.boundaries if key == "levels" else None return array # Parse input arguments and resolve incompatibilities vmin = vmax = None levels = _not_none(N=N, levels=levels, norm_kw_levs=norm_kw.pop("levels", None)) if positive and negative: warnings._warn_ultraplot( "Incompatible args positive=True and negative=True. Using former." ) negative = False if levels is not None and values is not None: warnings._warn_ultraplot( f"Incompatible args levels={levels!r} and values={values!r}. Using former." # noqa: E501 ) values = None # Infer level edges from level centers if possible # NOTE: The only way for user to manually impose BoundaryNorm is by # passing one -- users cannot create one using Norm constructor key. if isinstance(values, Integral): levels = values + 1 values = None if values is None: levels = _sanitize_levels("levels", levels, _not_none(min_levels, 2)) levels = _not_none(levels, rc["cmap.levels"]) else: values = _sanitize_levels("values", values, 1) kwargs["discrete_ticks"] = values # passed to _parse_level_norm if len(values) == 1: levels = [values[0] - 1, values[0] + 1] # weird but why not elif norm is not None and norm not in ("segments", "segmented"): # Generate levels by finding in-between points in the # normalized numeric space, e.g. LogNorm space. norm_kw = norm_kw or {} convert = constructor.Norm(norm, **norm_kw) levels = convert.inverse(utils.edges(convert(values))) else: # Generate levels so that ticks will be centered between edges # Solve: (x1 + x2) / 2 = y --> x2 = 2 * y - x1 with arbitrary init x1 descending = values[1] < values[0] if descending: # e.g. [100, 50, 20, 10, 5, 2, 1] successful if reversed values = values[::-1] levels = [1.5 * values[0] - 0.5 * values[1]] # arbitrary starting point for value in values: levels.append(2 * value - levels[-1]) if np.any(np.diff(levels) < 0): # never happens for evenly spaced levs levels = utils.edges(values) if descending: # then revert back below levels = levels[::-1] # Process level edges and infer defaults # NOTE: Matplotlib colorbar algorithm *cannot* handle descending levels so # this function reverses them and adds special attribute to the normalizer. # Then colorbar() reads this attr and flips the axis and the colormap direction if np.iterable(levels): pop = _pop_params(kwargs, self._parse_level_num, ignore_internal=True) if pop: warnings._warn_ultraplot(f"Ignoring unused keyword arg(s): {pop}") elif not skip_autolev: levels, kwargs = self._parse_level_num( *args, levels=levels, norm=norm, norm_kw=norm_kw, extend=extend, negative=negative, positive=positive, center_levels=center_levels, **kwargs, ) else: levels = values = None # Determine default colorbar locator and norm and apply filters # NOTE: DiscreteNorm does not currently support vmin and # vmax different from level list minimum and maximum. # NOTE: The level restriction should have no effect if levels were generated # automatically. However want to apply these to manual-input levels as well. if levels is not None: levels = _restrict_levels(levels) if len(levels) == 0: # skip pass elif len(levels) == 1: # use central colormap color vmin, vmax = levels[0] - 1, levels[0] + 1 else: # use minimum and maximum vmin, vmax = np.min(levels), np.max(levels) if not np.allclose(levels[1] - levels[0], np.diff(levels)): norm = _not_none(norm, "segmented") if norm in ("segments", "segmented"): norm_kw["levels"] = levels return levels, vmin, vmax, norm, norm_kw, kwargs @staticmethod def _parse_level_norm( levels, norm, cmap, *, extend=None, min_levels=None, discrete_ticks=None, discrete_labels=None, center_levels=None, **kwargs, ): """ Create a `~ultraplot.colors.DiscreteNorm` or `~ultraplot.colors.BoundaryNorm` from the input colormap and normalizer. Parameters ---------- levels : sequence of float The level boundaries. norm : `~matplotlib.colors.Normalize` The continuous normalizer. cmap : `~matplotlib.colors.Colormap` The colormap. extend : str, optional The extend setting. min_levels : int, optional The minimum number of levels. discrete_ticks : array-like, optional The colorbar locations to tick. discrete_labels : array-like, optional The colorbar tick labels. Returns ------- norm : `~ultraplot.colors.DiscreteNorm` The discrete normalizer. cmap : `~matplotlib.colors.Colormap` The possibly-modified colormap. kwargs Unused arguments. """ # Reverse the colormap if input levels or values were descending # See _parse_level_vals for details min_levels = _not_none(min_levels, 2) # 1 for contour plots unique = extend = _not_none(extend, "neither") under = cmap._rgba_under over = cmap._rgba_over cyclic = getattr(cmap, "_cyclic", None) qualitative = isinstance(cmap, pcolors.DiscreteColormap) # see _parse_cmap if len(levels) < min_levels: raise ValueError( f"Invalid levels={levels!r}. Must be at least length {min_levels}." ) # Ensure end colors are unique by scaling colors as if extend='both' # NOTE: Inside _parse_cmap should have enforced extend='neither' if cyclic: step = 0.5 # try to allocate space for unique end colors unique = "both" # Ensure color list length matches level list length using rotation # NOTE: No harm if not enough colors, we just end up with the same # color for out-of-bounds extensions. This is a gentle failure elif qualitative: step = 0.5 # try to sample the central index for safety unique = "both" auto_under = under is None and extend in ("min", "both") auto_over = over is None and extend in ("max", "both") ncolors = len(levels) - min_levels + 1 + auto_under + auto_over colors = list(itertools.islice(itertools.cycle(cmap.colors), ncolors)) if auto_under and len(colors) > 1: under, *colors = colors if auto_over and len(colors) > 1: *colors, over = colors cmap = cmap.copy(colors, N=len(colors)) if under is not None: cmap.set_under(under) if over is not None: cmap.set_over(over) # Ensure middle colors sample full range when extreme colors are present # by scaling colors as if extend='neither' else: step = 1.0 if over is not None and under is not None: unique = "neither" elif over is not None: # turn off over-bounds unique bin if extend == "both": unique = "min" elif extend == "max": unique = "neither" elif under is not None: # turn off under-bounds unique bin if extend == "both": unique = "min" elif extend == "max": unique = "neither" # Generate DiscreteNorm and update "child" norm with vmin and vmax from # levels. This lets the colorbar set tick locations properly! center_levels = _not_none(center_levels, rc["colorbar.center_levels"]) if not isinstance(norm, mcolors.BoundaryNorm) and len(levels) > 1: norm = pcolors.DiscreteNorm( levels, norm=norm, unique=unique, step=step, ticks=discrete_ticks, labels=discrete_labels, ) return norm, cmap, kwargs def _apply_plot(self, *pairs, vert=True, **kwargs): """ Plot standard lines. """ # Plot the lines objs, xsides = [], [] kws = kwargs.copy() kws.update(_pop_props(kws, "line")) # Disable auto label inference when in external context if self._in_external_context(): kws["autolabels"] = False kws, extents = self._inbounds_extent(**kws) for xs, ys, fmt in self._iter_arg_pairs(*pairs): xs, ys, kw = self._parse_1d_args(xs, ys, vert=vert, **kws) ys, kw = inputs._dist_reduce(ys, **kw) guide_kw = _pop_params(kw, self._update_guide) # after standardize for _, n, x, y, kw in self._iter_arg_cols(xs, ys, **kw): kw = self._parse_cycle(n, **kw) *eb, kw = self._add_error_bars( x, y, vert=vert, default_barstds=True, **kw ) # noqa: E501 *es, kw = self._add_error_shading(x, y, vert=vert, **kw) xsides.append(x) if not vert: x, y = y, x a = [x, y] if fmt is not None: # x1, y1, fmt1, x2, y2, fm2... style input a.append(fmt) (obj,) = self._call_native("plot", *a, **kw) self._inbounds_xylim(extents, x, y) objs.append((*eb, *es, obj) if eb or es else obj) # Add sticky edges self._fix_sticky_edges(objs, "x" if vert else "y", *xsides, only=mlines.Line2D) self._update_guide(objs, **guide_kw) return cbook.silent_list("Line2D", objs) # always return list
[docs] @docstring._snippet_manager def line(self, *args, **kwargs): """ %(plot.plot)s """ return self.plot(*args, **kwargs)
[docs] @docstring._snippet_manager def linex(self, *args, **kwargs): """ %(plot.plotx)s """ return self.plotx(*args, **kwargs)
def _apply_lollipop( self, xs, hs, ws, bs, *, horizontal=False, **kwargs, ): """ Lollipop graphs are an alternative way to visualize bar charts. We can utilize the bar internal mechanics to generate the charts and then replace the look with the lollipop graphs """ # Filter the props for the stem and marker out stemcolor = kwargs.pop("stemcolor", rc["lollipop.stemcolor"]) stemwidth = units(kwargs.pop("stemwidth", rc["lollipop.stemwidth"])) stemlinestyle = kwargs.pop("stemstyle", rc["lollipop.stemlinestyle"]) # For the markers we can filter out all the props marker_props = _pop_props(kwargs, "collection") if horizontal: bars = self.barh(xs, hs, ws, bs, **kwargs) else: bars = self.bar(xs, hs, ws, bs, **kwargs) xmin = np.inf xmax = -np.inf all_lines = [] patch_collection = [] # If we have a singular (non-grouped) data # we have to wrap the container in a list if isinstance(bars, mcontainer.BarContainer): bars = [bars] for bar in bars: xy = np.zeros((len(bar.patches), 2)) for idx, patch in enumerate(bar.patches): patch.set_visible(False) color = patch.get_facecolor() x0, y0 = patch.xy if horizontal: x, y = bar.datavalues[idx], y0 y += 0.5 * patch.get_height() all_lines.append([(0, y), (x, y)]) else: x, y = x0, bar.datavalues[idx] x += 0.5 * patch.get_width() all_lines.append([(x, 0), (x, y)]) xy[idx] = x, y pos = y if horizontal else x if pos < xmin: xmin = pos if pos > xmax: xmax = pos color = bar.patches[0].get_facecolor() bar_patch = self.scatter(*xy.T, color=color, **marker_props) patch_collection.append(bar_patch) line_collection = mcollections.LineCollection( all_lines, colors=stemcolor, linestyles=stemlinestyle, lw=stemwidth, zorder=bar.patches[0].zorder - 1, ) self.add_collection(line_collection) # Add some padding to make it look nicer pad = 0 if horizontal: max_height = max( patch.get_height() for bar in bars for patch in bar.patches ) pad = 2 * max_height else: max_width = max(patch.get_width() for bar in bars for patch in bar.patches) pad = 2 * max_width if horizontal: self.set_ylim(xmin - pad, xmax + pad) else: self.set_xlim(xmin - pad, xmax + pad) return patch_collection, line_collection
[docs] @docstring._snippet_manager def beeswarm(self, *args, **kwargs): """ %(plot.beeswarm)s """ return self._apply_beeswarm( *args, **kwargs, )
def _apply_beeswarm( self, data: np.ndarray, levels: np.ndarray = None, feature_values: np.ndarray = None, ss: float | np.ndarray = None, orientation: str = "horizontal", n_bins: int = 50, **kwargs, ) -> mcollections.Collection: # Parse input parameters ss, _ = self._parse_markersize(ss, **kwargs) colorbar = kwargs.pop("colorbar", False) colorbar_kw = kwargs.pop("colorbar_kw", {}) flatten = False if data.ndim == 1: flatten = True data = np.atleast_2d(data) n_points, n_features = data.shape[:2] # Convert to numpy arrays if levels is None: levels = np.arange(n_features) if data.ndim > 1 and levels.ndim == 1: levels = np.ones(data.shape) * levels[None] # Bin data to distribute the beeswarm extend_range = max(levels[:, -1]) + max(abs(levels[:, -1] - levels[:, -2])) level_widths = abs(np.diff(levels, axis=1, append=extend_range)) for level, d in enumerate(data.T): # Construct a histogram to estimate # the number of points present at a similar # x (for horizontal beeswarm) or y value (for # vertical beeswarm) counts, edges = np.histogram(d, bins=n_bins) upper_limit = levels[:, level] + level_widths[:, level] lower_limit = levels[:, level] - level_widths[:, level] # Adjust the values for each bin binned = np.clip( np.digitize(d, edges) - 1, 0, len(counts) - 1, ) z = counts.sum() for bin, count in enumerate(counts): # Skip bins without multiple points if count == 0: continue # Collect the group data and extract the # lower and upper bounds idx = np.where(binned == bin)[0].astype(int) lower = min(lower_limit[idx]) upper = max(upper_limit[idx]) # Distribute the points evenly but reduce # the range based on the number of points # in this bin compared to the total number of # points limit = ( (count / z) * (upper - lower) * 0.5 * 0.9 ) # give a slight space between the layers offset = np.linspace(-limit, limit, num=count, endpoint=True) levels[idx, level] += offset # Pop before plotting to avoid issues with guide_kw guide_kw = _pop_params(kwargs, self._update_guide) if feature_values is not None: kwargs = self._parse_cmap(feature_values, **kwargs) kwargs["c"] = feature_values.flat # Use flat to get around the issue of generating # multiple colorbars when feature_values are used flatten = True # Swap the data if we are in vert mode if orientation == "vertical": data, levels = levels, data # Put size back in kwargs if ss is not None: kwargs["s"] = ss if flatten: data, levels = data.flatten(), levels.flatten() objs = self.scatter( data, levels, **kwargs, ) self._update_guide(objs, queue_colorbar=False, **guide_kw) if colorbar: self.colorbar(objs, loc=colorbar, **colorbar_kw) return objs
[docs] @inputs._preprocess_or_redirect("x", "height", "width", "bottom") @docstring._snippet_manager def lollipop(self, *args, **kwargs): """ %(plot.lollipop)s """ return self._apply_lollipop(*args, horizontal=False, **kwargs)
[docs] @inputs._preprocess_or_redirect("x", "height", "width", "bottom") @docstring._snippet_manager def lollipoph(self, *args, **kwargs): """ %(plot.lollipop)s (horizontal lollipop) """ return self._apply_lollipop(*args, horizontal=True, **kwargs)
[docs] @docstring._snippet_manager def loglog(self, *args, **kwargs): """ %(plot.loglog)s """ objs = self._call_native("loglog", *args, **kwargs) if rc["formatter.log"]: self.format( xformatter="log", yformatter="log", ) return objs
[docs] @docstring._snippet_manager def semilogy(self, *args, **kwargs): """ %(plot.semilogy)s """ objs = self._call_native("semilogy", *args, **kwargs) if rc["formatter.log"]: self.format( yformatter="log", ) return objs
[docs] @docstring._snippet_manager def semilogx(self, *args, **kwargs): """ %(plot.semilogx)s """ objs = self._call_native("semilogx", *args, **kwargs) if rc["formatter.log"]: self.format( xformatter="log", ) return objs
[docs] @inputs._preprocess_or_redirect("x", "y", allow_extra=True) @docstring._concatenate_inherited @docstring._snippet_manager def plot(self, *args, **kwargs): """ %(plot.plot)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_plot(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("y", "x", allow_extra=True) @docstring._snippet_manager def plotx(self, *args, **kwargs): """ %(plot.plotx)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_plot(*args, **kwargs)
def _apply_step(self, *pairs, vert=True, where="pre", **kwargs): """ Plot the steps. """ # Plot the steps # NOTE: Internally matplotlib plot() calls step() so we could use that # approach... but instead repeat _apply_plot internals here so we can # disable error indications that make no sense for 'step' plots. kws = kwargs.copy() opts = ("pre", "post", "mid") if where not in opts: raise ValueError(f"Invalid where={where!r}. Options are {opts!r}.") kws.update(_pop_props(kws, "line")) kws.setdefault("drawstyle", "steps-" + where) kws, extents = self._inbounds_extent(**kws) objs = [] for xs, ys, fmt in self._iter_arg_pairs(*pairs): xs, ys, kw = self._parse_1d_args(xs, ys, vert=vert, **kws) guide_kw = _pop_params(kw, self._update_guide) # after standardize if fmt is not None: kw["fmt"] = fmt for _, n, x, y, *a, kw in self._iter_arg_cols(xs, ys, **kw): kw = self._parse_cycle(n, **kw) if not vert: x, y = y, x (obj,) = self._call_native("step", x, y, *a, **kw) self._inbounds_xylim(extents, x, y) objs.append(obj) self._update_guide(objs, **guide_kw) return cbook.silent_list("Line2D", objs) # always return list
[docs] @inputs._preprocess_or_redirect("x", "y", allow_extra=True) @docstring._concatenate_inherited @docstring._snippet_manager def step(self, *args, **kwargs): """ %(plot.step)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_step(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("y", "x", allow_extra=True) @docstring._snippet_manager def stepx(self, *args, **kwargs): """ %(plot.stepx)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_step(*args, **kwargs)
def _apply_stem( self, x, y, *, linefmt=None, markerfmt=None, basefmt=None, orientation=None, **kwargs, ): """ Plot stem lines and markers. """ # Parse input kw = kwargs.copy() kw, extents = self._inbounds_extent(**kw) x, y, kw = self._parse_1d_args(x, y, **kw) guide_kw = _pop_params(kw, self._update_guide) # Set default colors # NOTE: 'fmt' strings can only be 2 to 3 characters and include color # shorthands like 'r' or cycle colors like 'C0'. Cannot use full color names. # NOTE: Matplotlib defaults try to make a 'reddish' color the base and 'bluish' # color the stems. To make this more robust we temporarily replace the cycler. # Bizarrely stem() only reads from the global cycler() so have to update it. fmts = (linefmt, basefmt, markerfmt) orientation = _not_none(orientation, "vertical") if not any(isinstance(fmt, str) and re.match(r"\AC[0-9]", fmt) for fmt in fmts): cycle = constructor.Cycle((rc["negcolor"], rc["poscolor"]), name="_no_name") kw.setdefault("cycle", cycle) kw["basefmt"] = _not_none(basefmt, "C1-") # red base kw["linefmt"] = linefmt = _not_none(linefmt, "C0-") # blue stems kw["markerfmt"] = _not_none(markerfmt, linefmt[:-1] + "o") # blue marker sig = inspect.signature(maxes.Axes.stem) if "use_line_collection" in sig.parameters: kw.setdefault("use_line_collection", True) # Call function then restore property cycle # WARNING: Horizontal stem plots are only supported in recent versions of # matplotlib. Let matplotlib raise an error if need be. ctx = {} cycle, kw = self._parse_cycle(return_cycle=True, **kw) # allow re-application if cycle is not None: ctx["axes.prop_cycle"] = cycle if orientation == "horizontal": # may raise error kw["orientation"] = orientation with rc.context(ctx): obj = self._call_native("stem", x, y, **kw) self._inbounds_xylim(extents, x, y, orientation=orientation) self._update_guide(obj, **guide_kw) return obj
[docs] @inputs._preprocess_or_redirect("x", "y") @docstring._concatenate_inherited @docstring._snippet_manager def stem(self, *args, **kwargs): """ %(plot.stem)s """ kwargs = _parse_vert(default_orientation="vertical", **kwargs) return self._apply_stem(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("x", "y") @docstring._snippet_manager def stemx(self, *args, **kwargs): """ %(plot.stemx)s """ kwargs = _parse_vert(default_orientation="horizontal", **kwargs) return self._apply_stem(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("x", "y", ("c", "color", "colors", "values")) @docstring._snippet_manager def parametric(self, x, y, c, *, interp=0, scalex=True, scaley=True, **kwargs): """ %(plot.parametric)s """ # Standardize arguments # NOTE: Values are inferred in _auto_format() the same way legend labels are # inferred. Will not always return an array like inferred coordinates do. # NOTE: We want to be able to think of 'c' as a scatter color array and # as a colormap color list. Try to support that here. kw = kwargs.copy() kw.update(_pop_props(kw, "collection")) kw, extents = self._inbounds_extent(**kw) label = _not_none(**{key: kw.pop(key, None) for key in ("label", "value")}) x, y, kw = self._parse_1d_args( x, y, values=c, autovalues=True, autoreverse=False, **kw ) c = kw.pop("values", None) # permits auto-inferring values c = np.arange(y.size) if c is None else inputs._to_numpy_array(c) if ( c.size in (3, 4) and y.size not in (3, 4) and mcolors.is_color_like(tuple(c.flat)) or all(map(mcolors.is_color_like, c)) ): c, kw["colors"] = np.arange(c.shape[0]), c # convert color specs # Interpret color values # NOTE: This permits string label input for 'values' c, guide_kw = inputs._meta_coords(c, which="") # convert string labels if c.size == 1 and y.size != 1: c = np.arange(y.size) # convert dummy label for single color if guide_kw: guides._add_guide_kw("colorbar", kw, **guide_kw) else: guides._add_guide_kw("colorbar", kw, locator=c) # Interpolate values to allow for smooth gradations between values or just # to color siwtchover halfway between points (interp True, False respectively) if interp > 0: x_orig, y_orig, v_orig = x, y, c x, y, c = [], [], [] for j in range(x_orig.shape[0] - 1): idx = slice(None) if j + 1 < x_orig.shape[0] - 1: idx = slice(None, -1) x.extend(np.linspace(x_orig[j], x_orig[j + 1], interp + 2)[idx].flat) y.extend(np.linspace(y_orig[j], y_orig[j + 1], interp + 2)[idx].flat) c.extend(np.linspace(v_orig[j], v_orig[j + 1], interp + 2)[idx].flat) x, y, c = np.array(x), np.array(y), np.array(c) # Get coordinates and values for points to the 'left' and 'right' of joints coords = [] for i in range(y.shape[0]): icoords = np.empty((3, 2)) for j, arr in enumerate((x, y)): icoords[:, j] = ( arr[0] if i == 0 else 0.5 * (arr[i - 1] + arr[i]), arr[i], arr[-1] if i + 1 == y.shape[0] else 0.5 * (arr[i + 1] + arr[i]), ) coords.append(icoords) coords = np.array(coords) # Get the colormap accounting for 'discrete' mode discrete = kw.get("discrete", None) if discrete is not None and not discrete: a = (x, y, c) # pick levels from vmin and vmax, possibly limiting range else: a, kw["values"] = (), c center_levels = kw.pop("center_levels", None) kw = self._parse_cmap(*a, center_levels=center_levels, plot_lines=True, **kw) cmap, norm = kw.pop("cmap"), kw.pop("norm") # Add collection with some custom attributes # NOTE: Modern API uses self._request_autoscale_view but this is # backwards compatible to earliest matplotlib versions. guide_kw = _pop_params(kw, self._update_guide) obj = mcollections.LineCollection( coords, cmap=cmap, norm=norm, label=label, linestyles="-", capstyle="butt", joinstyle="miter", ) obj.set_array(c) # the ScalarMappable method obj.update({key: value for key, value in kw.items() if key not in ("color",)}) self.add_collection(obj) # also adjusts label self.autoscale_view(scalex=scalex, scaley=scaley) self._update_guide(obj, **guide_kw) return obj
def _apply_lines( self, xs, ys1, ys2, colors, *, vert=True, stack=None, stacked=None, negpos=False, **kwargs, ): """ Plot vertical or hotizontal lines at each point. """ # Parse input arguments kw = kwargs.copy() name = "vlines" if vert else "hlines" if colors is not None: kw["colors"] = colors kw.update(_pop_props(kw, "collection")) kw, extents = self._inbounds_extent(**kw) stack = _not_none(stack=stack, stacked=stacked) xs, ys1, ys2, kw = self._parse_1d_args(xs, ys1, ys2, vert=vert, **kw) guide_kw = _pop_params(kw, self._update_guide) # Support "negative" and "positive" lines # TODO: Ensure 'linewidths' etc. are applied! For some reason # previously thought they had to be manually applied. y0 = 0 objs, sides = [], [] for _, n, x, y1, y2, kw in self._iter_arg_cols(xs, ys1, ys2, **kw): kw = self._parse_cycle(n, **kw) if stack: y1 = y1 + y0 # avoid in-place modification y2 = y2 + y0 y0 = y0 + y2 - y1 # irrelevant that we added y0 to both if negpos: obj = self._call_negpos(name, x, y1, y2, colorkey="colors", **kw) else: obj = self._call_native(name, x, y1, y2, **kw) for y in (y1, y2): self._inbounds_xylim(extents, x, y, vert=vert) if y.size == 1: # add sticky edges if bounds are scalar sides.append(y) objs.append(obj) # Draw guide and add sticky edges self._fix_sticky_edges(objs, "y" if vert else "x", *sides) self._update_guide(objs, **guide_kw) return objs[0] if len(objs) == 1 else cbook.silent_list("LineCollection", objs) # WARNING: breaking change from native 'ymin' and 'ymax'
[docs] @inputs._preprocess_or_redirect("x", "y1", "y2", ("c", "color", "colors")) @docstring._snippet_manager def vlines(self, *args, **kwargs): """ %(plot.vlines)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_lines(*args, **kwargs)
# WARNING: breaking change from native 'xmin' and 'xmax'
[docs] @inputs._preprocess_or_redirect("y", "x1", "x2", ("c", "color", "colors")) @docstring._snippet_manager def hlines(self, *args, **kwargs): """ %(plot.hlines)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_lines(*args, **kwargs)
def _parse_markersize( self, s, *, smin=None, smax=None, area_size=True, absolute_size=None, **kwargs ): """ Scale the marker sizes with optional keyword args. """ if s is not None: s = inputs._to_numpy_array(s) if absolute_size is None: absolute_size = s.size == 1 if not absolute_size or smin is not None or smax is not None: smin = _not_none(smin, 1) smax = _not_none(smax, rc["lines.markersize"] ** (1, 2)[area_size]) dmin, dmax = inputs._safe_range(s) # data value range if dmin is not None and dmax is not None and dmin != dmax: s = smin + (smax - smin) * (s - dmin) / (dmax - dmin) s = s ** (2, 1)[area_size] return s, kwargs def _apply_scatter(self, xs, ys, ss, cc, *, vert=True, **kwargs): """ Apply scatter or scatterx markers. """ # Manual property cycling. Converts Line2D keywords used in property # cycle to PathCollection keywords that can be passed to scatter. # NOTE: Matplotlib uses the property cycler in _get_patches_for_fill for # scatter() plots. It only ever inherits color from that. We instead use # _get_lines to help overarching goal of unifying plot() and scatter(). cycle_manually = { "alpha": "alpha", "color": "c", "markerfacecolor": "c", "markeredgecolor": "edgecolors", "marker": "marker", "markersize": "s", "markeredgewidth": "linewidths", "linestyle": "linestyles", "linewidth": "linewidths", } kw = kwargs.copy() inbounds = kw.pop("inbounds", None) kw.update(_pop_props(kw, "collection")) kw, extents = self._inbounds_extent(inbounds=inbounds, **kw) xs, ys, kw = self._parse_1d_args(xs, ys, vert=vert, autoreverse=False, **kw) ys, kw = inputs._dist_reduce(ys, **kw) ss, kw = self._parse_markersize(ss, **kw) # parse 's' # Only parse color if explicitly provided infer_rgb = True if cc is not None: if not isinstance(cc, str): test = np.atleast_1d(cc) if ( any(_.ndim == 2 and _.shape[1] in (3, 4) for _ in (xs, ys)) and test.ndim == 2 and test.shape[1] in (3, 4) ): infer_rgb = False cc, kw = self._parse_color( xs, ys, cc, inbounds=inbounds, apply_cycle=False, infer_rgb=infer_rgb, **kw, ) # Create the cycler object by manually cycling and sanitzing the inputs guide_kw = _pop_params(kw, self._update_guide) objs = [] for _, n, x, y, s, c, kw in self._iter_arg_cols(xs, ys, ss, cc, **kw): # Cycle s and c as they are in cycle_manually # Note: they could be None kw["s"], kw["c"] = s, c kw = self._parse_cycle(n, cycle_manually=cycle_manually, **kw) *eb, kw = self._add_error_bars(x, y, vert=vert, default_barstds=True, **kw) *es, kw = self._add_error_shading(x, y, vert=vert, color_key="c", **kw) if not vert: x, y = y, x obj = self._call_native("scatter", x, y, **kw) self._inbounds_xylim(extents, x, y) objs.append((*eb, *es, obj) if eb or es else obj) self._update_guide(objs, queue_colorbar=False, **guide_kw) return objs[0] if len(objs) == 1 else cbook.silent_list("PathCollection", objs) # NOTE: Matplotlib internally applies scatter 'c' arguments as the # 'facecolors' argument to PathCollection. So perfectly reasonable to # point both 'color' and 'facecolor' arguments to the 'c' keyword here.
[docs] @inputs._preprocess_or_redirect( "x", "y", _get_aliases("collection", "sizes"), _get_aliases("collection", "colors", "facecolors"), keywords=_get_aliases("collection", "linewidths", "edgecolors"), ) @docstring._concatenate_inherited @docstring._snippet_manager def scatter(self, *args, **kwargs): """ %(plot.scatter)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_scatter(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect( "y", "x", _get_aliases("collection", "sizes"), _get_aliases("collection", "colors", "facecolors"), keywords=_get_aliases("collection", "linewidths", "edgecolors"), ) @docstring._snippet_manager def scatterx(self, *args, **kwargs): """ %(plot.scatterx)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_scatter(*args, **kwargs)
def _apply_fill( self, xs, ys1, ys2, where, *, vert=True, negpos=None, stack=None, stacked=None, **kwargs, ): """Apply area shading using `fill_between` or `fill_betweenx`. This is the internal implementation for `fill_between`, `fill_betweenx`, `area`, and `areax`. Parameters ---------- xs, ys1, ys2 : array-like The x and y coordinates for the shaded regions. where : array-like, optional A boolean mask for the points that should be shaded. vert : bool, optional The orientation of the shading. If `True` (default), `fill_between` is used. If `False`, `fill_betweenx` is used. negpos : bool, optional Whether to use different colors for positive and negative shades. stack : bool, optional Whether to stack shaded regions. **kwargs Additional keyword arguments passed to the matplotlib fill function. Notes ----- Special handling for plots from external packages (e.g., seaborn): When this method is used in a context where plots are generated by an external library like seaborn, it tags the resulting polygons (e.g., confidence intervals) as "synthetic". This is done unless a user explicitly provides a label. Synthetic artists are marked with `_ultraplot_synthetic=True` and given a label starting with an underscore (e.g., `_ultraplot_fill`). This prevents them from being automatically included in legends, keeping the legend clean and focused on user-specified elements. Seaborn internally generates tags like "y", "ymin", and "ymax" for vertical fills, and "x", "xmin", "xmax" for horizontal fills. UltraPlot recognizes these and treats them as synthetic unless a different label is provided. """ # Parse input arguments kw = kwargs.copy() kw.update(_pop_props(kw, "patch")) kw, extents = self._inbounds_extent(**kw) name = "fill_between" if vert else "fill_betweenx" stack = _not_none(stack=stack, stacked=stacked) xs, ys1, ys2, kw = self._parse_1d_args(xs, ys1, ys2, vert=vert, **kw) edgefix_kw = _pop_params(kw, self._fix_patch_edges) guide_kw = _pop_params(kw, self._update_guide) # External override only; no seaborn-based tagging # Draw patches y0 = 0 objs, xsides, ysides = [], [], [] for _, n, x, y1, y2, w, kw in self._iter_arg_cols(xs, ys1, ys2, where, **kw): kw = self._parse_cycle(n, **kw) # If stacking requested, adjust y arrays if stack: y1 = y1 + y0 y2 = y2 + y0 y0 = y0 + y2 - y1 # External override: if in external mode and no explicit label was provided, # mark fill as synthetic so it is ignored by legend parsing unless explicitly labeled. synthetic = False if self._in_external_context() and ( kw.get("label", None) is None or str(kw.get("label")) in ("y", "ymin", "ymax") ): kw["label"] = "_ultraplot_fill" synthetic = True # Draw object (negpos splits into two silent_list items) if negpos: obj = self._call_negpos(name, x, y1, y2, where=w, use_where=True, **kw) else: obj = self._call_native(name, x, y1, y2, where=w, **kw) if synthetic: try: setattr(obj, "_ultraplot_synthetic", True) if hasattr(obj, "set_label"): obj.set_label("_ultraplot_fill") except Exception: pass for art in guides._iter_iterables(obj): try: setattr(art, "_ultraplot_synthetic", True) if hasattr(art, "set_label"): art.set_label("_ultraplot_fill") except Exception: pass # No synthetic tagging or seaborn-based label overrides # Patch edge fixes self._fix_patch_edges(obj, **edgefix_kw, **kw) # Track sides for sticky edges xsides.append(x) for y in (y1, y2): self._inbounds_xylim(extents, x, y, vert=vert) if y.size == 1: ysides.append(y) objs.append(obj) # Draw guide and add sticky edges # Draw guide and add sticky edges self._update_guide(objs, **guide_kw) for axis, sides in zip("xy" if vert else "yx", (xsides, ysides)): self._fix_sticky_edges(objs, axis, *sides) return objs[0] if len(objs) == 1 else cbook.silent_list("PolyCollection", objs) return objs[0] if len(objs) == 1 else cbook.silent_list("PolyCollection", objs)
[docs] @docstring._snippet_manager def area(self, *args, **kwargs): """ %(plot.fill_between)s """ return self.fill_between(*args, **kwargs)
[docs] @docstring._snippet_manager def areax(self, *args, **kwargs): """ %(plot.fill_betweenx)s """ return self.fill_betweenx(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("x", "y1", "y2", "where") @docstring._concatenate_inherited @docstring._snippet_manager def fill_between(self, *args, **kwargs): """ %(plot.fill_between)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_fill(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("y", "x1", "x2", "where") @docstring._concatenate_inherited @docstring._snippet_manager def fill_betweenx(self, *args, **kwargs): """ %(plot.fill_betweenx)s """ # NOTE: The 'horizontal' orientation will be inferred by downstream # wrappers using the function name. kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_fill(*args, **kwargs)
[docs] @docstring._snippet_manager def graph( self, g: Union["nx.Graph", np.ndarray], layout: Union[str, dict, Callable] = None, nodes: Union[None, bool, Iterable] = None, edges: Union[None, bool, Iterable] = None, labels: Union[None, bool, Iterable] = None, layout_kw: Optional[dict] = None, node_kw: Optional[dict] = None, edge_kw: Optional[dict] = None, label_kw: Optional[dict] = None, rescale: Union[None, bool] = None, ): """ %(plot.graph)s """ import networkx as nx # Handle mutable default arguments layout_kw = layout_kw or {} node_kw = node_kw or {} edge_kw = edge_kw or {} label_kw = label_kw or {} labels = _not_none(labels, rc["graph.draw_labels"]) nodes = _not_none(nodes, rc["graph.draw_nodes"]) edges = _not_none(edges, rc["graph.draw_edges"]) rescale = _not_none(rescale, rc["graph.rescale"]) match g: case np.ndarray(): # Check if g is an adjacency matrix assert len(g.shape) == 2 x, y = g.shape[:2] if x == y: g = nx.from_numpy_array(g) else: # Assume edgelist g = nx.from_edgelist(g) case nx.Graph() | nx.DiGraph() | nx.MultiGraph() | nx.MultiDiGraph(): pass case _: raise TypeError(f"Unsupported graph type: {type(g)}") match layout: case str(): layout_name = ( layout if layout.endswith("_layout") else layout + "_layout" ) pos = getattr(nx, layout_name)(g, **layout_kw) case layout if isinstance(layout, Callable): pos = layout(g, **layout_kw) case dict(): pos = layout case _: pos = nx.kamada_kawai_layout(g) if rescale: # Normalize node positions to fit in a [0, 1] x [0, 1] box. xs = [x for x, y in pos.values()] ys = [y for x, y in pos.values()] min_x, max_x = min(xs), max(xs) min_y, max_y = min(ys), max(ys) width = max_x - min_x height = max_y - min_y pos = { k: ( (x - min_x) / width if width else 0.5, (y - min_y) / height if height else 0.5, ) for k, (x, y) in pos.items() } # Set a sensible default if not given if "node_size" not in node_kw: coords = np.array(list(pos.values())) xlim = self.get_xlim() ylim = self.get_ylim() # Size of data space shown data_span = np.array([xlim[1] - xlim[0], ylim[1] - ylim[0]]) axis_bbox = self.get_window_extent().transformed( self.figure.dpi_scale_trans.inverted() ) axis_size_inch = np.array([axis_bbox.width, axis_bbox.height]) dpi = self.figure.dpi axis_size_px = axis_size_inch * dpi # Convert a fixed pixel diameter into data units desired_px_diameter = 7 # px data_units_per_px = data_span / axis_size_px data_diameter = np.mean(data_units_per_px) * desired_px_diameter # Convert to `node_size` in pt² (as required by nx.draw) # 1 point = 1/72 inch → diameter in points = (desired_px / dpi) * 72 diameter_inch = desired_px_diameter / dpi diameter_pt = diameter_inch * 72 radius_pt = diameter_pt / 2 node_size = np.pi * radius_pt**2 # area in pt² node_kw["node_size"] = node_size # By default soften the edge alpha to prevent "hairball " effect if "alpha" not in edge_kw: n_edges = g.number_of_edges() n = g.number_of_nodes() # For more edges reduce the alpha for the edges alpha = 1 - np.exp(-n_edges / (n - 1)) edge_kw["alpha"] = max( alpha, 0.1 ) # with a cutt-off to prevent dissapearence for complete graphs # Draw the graph using networks functions if nodes: if np.iterable(nodes): node_kw["nodelist"] = nodes nodes = nx.draw_networkx_nodes(g, pos=pos, ax=self, **node_kw) if edges: if np.iterable(edges): edge_kw["edgelist"] = edges edges = nx.draw_networkx_edges(g, pos=pos, ax=self, **edge_kw) if labels: if np.iterable(labels): label_kw["labels"] = labels labels = nx.draw_networkx_labels(g, pos=pos, ax=self, **label_kw) # Apply styling self.set_aspect(rc["graph.aspect"]) self.grid(rc["graph.draw_grid"]) self.set_facecolor(rc["graph.facecolor"]) self._toggle_spines(rc["graph.draw_spines"]) return nodes, edges, labels
@staticmethod def _convert_bar_width(x, width=1): """ Convert bar plot widths from relative to coordinate spacing. Relative widths are much more convenient for users. """ # WARNING: This will fail for non-numeric non-datetime64 singleton # datatypes but this is good enough for vast majority of cases. x_test = inputs._to_numpy_array(x) if len(x_test) >= 2: x_step = x_test[1:] - x_test[:-1] x_step = np.concatenate((x_step, x_step[-1:])) elif x_test.dtype == np.datetime64: x_step = np.timedelta64(1, "D") else: x_step = np.array(0.5) if np.issubdtype(x_test.dtype, np.datetime64): # Avoid integer timedelta truncation x_step = x_step.astype("timedelta64[ns]") return width * x_step def _apply_bar( self, xs, hs, ws, bs, *, absolute_width=None, stack=None, stacked=None, negpos=False, orientation="vertical", **kwargs, ): """ Apply bar or barh command. Support default "minima" at zero. """ # Parse args kw = kwargs.copy() kw, extents = self._inbounds_extent(**kw) bar_labels = kw.pop("bar_labels", rc["bar.bar_labels"]) bar_labels_kw = kw.pop("bar_labels_kw", {}) name = "barh" if orientation == "horizontal" else "bar" stack = _not_none(stack=stack, stacked=stacked) xs, hs, kw = self._parse_1d_args(xs, hs, orientation=orientation, **kw) edgefix_kw = _pop_params(kw, self._fix_patch_edges) if absolute_width is None: absolute_width = False or self._in_external_context() # Call func after converting bar width b0 = 0 objs = [] kw.update(_pop_props(kw, "patch")) hs, kw = inputs._dist_reduce(hs, **kw) guide_kw = _pop_params(kw, self._update_guide) alphas = kw.pop("alpha", None) # We apply alphas over the columns ncols = hs.shape[-1] if alphas is None: alphas = ncols * [None] elif isinstance(alphas, Number): alphas = ncols * [alphas] elif len(alphas) != ncols: raise ValueError( f"Received {len(alphas)} values for alpha but needed {ncols}" ) for i, n, x, h, w, b, kw in self._iter_arg_cols(xs, hs, ws, bs, **kw): kw = self._parse_cycle(n, **kw) # Adjust x or y coordinates for grouped and stacked bars w = _not_none(w, np.array([0.8])) # same as mpl but in *relative* units b = _not_none(b, np.array([0.0])) # same as mpl if not absolute_width: w = self._convert_bar_width(x, w) if stack: b = b + b0 b0 = b0 + h else: # instead "group" the bars (this is no-op if we have 1 column) w = w / n # rescaled o = 0.5 * (n - 1) # center coordinate x = x + w * (i - o) # += may cause integer/float casting issue # Draw simple bars *eb, kw = self._add_error_bars( x, b + h, default_barstds=True, orientation=orientation, **kw ) # noqa: E501 if negpos: obj = self._call_negpos(name, x, h, w, b, use_zero=True, **kw) else: obj = self._call_native(name, x, h, w, b, **kw) if bar_labels: if isinstance(obj, mcontainer.BarContainer): self._add_bar_labels(obj, orientation=orientation, **bar_labels_kw) self._fix_patch_edges(obj, **edgefix_kw, **kw) for y in (b, b + h): self._inbounds_xylim(extents, x, y, orientation=orientation) if alphas[i] is not None: for child in obj.get_children(): child.set_alpha(alphas[i]) objs.append((*eb, obj) if eb else obj) self._update_guide(objs, **guide_kw) return objs[0] if len(objs) == 1 else cbook.silent_list("BarContainer", objs) def _add_bar_labels( self, container, *, orientation="horizontal", **kwargs, ): """ Automatically add bar labels and rescale the limits to produce a striking visual image. """ # Drawing the labels does not rescale the limits to account # for the labels. We therefore first draw them and then # adjust the range for x or y depending on the orientation of the bar bar_labels = self._call_native("bar_label", container, **kwargs) which = "x" if orientation == "horizontal" else "y" other_which = "y" if orientation == "horizontal" else "x" # Get current limits current_lim = getattr(self, f"get_{which}lim")() other_lim = getattr(self, f"get_{other_which}lim")() # Find the maximum extent of text + bar position max_extent = current_lim[1] # Start with current upper limit w = 0 for label, bar in zip(bar_labels, container): # Get text bounding box bbox = label.get_window_extent(renderer=self.figure.canvas.get_renderer()) bbox_data = bbox.transformed(self.transData.inverted()) if orientation == "horizontal": # For horizontal bars, check if text extends beyond right edge bar_end = bar.get_width() + bar.get_x() text_end = bar_end + bbox_data.width max_extent = max(max_extent, text_end) w = max(w, bar.get_height()) else: # For vertical bars, check if text extends beyond top edge bar_end = bar.get_height() + bar.get_y() text_end = bar_end + bbox_data.height max_extent = max(max_extent, text_end) w = max(w, bar.get_width()) # Only adjust limits if text extends beyond current range if max_extent > current_lim[1]: padding = (max_extent - current_lim[1]) * 1.25 # Add a bit of padding new_lim = (current_lim[0], max_extent + padding) getattr(self, f"set_{which}lim")(new_lim) lim = [getattr(self.dataLim, f"{other_which}{idx}") for idx in range(0, 2)] lim = (lim[0] - w / 4, lim[1] + w / 4) current_lim = getattr(self, f"get_{other_which}lim")() new_lim = (min(lim[0], current_lim[0]), max(lim[1], current_lim[1])) getattr(self, f"set_{other_which}lim")(new_lim) return bar_labels
[docs] @inputs._preprocess_or_redirect("x", "height", "width", "bottom") @docstring._concatenate_inherited @docstring._snippet_manager def bar(self, *args, **kwargs): """ %(plot.bar)s """ kwargs = _parse_vert(default_orientation="vertical", **kwargs) return self._apply_bar(*args, **kwargs)
# WARNING: Swap 'height' and 'width' here so that they are always relative # to the 'tall' axis. This lets people always pass 'width' as keyword
[docs] @inputs._preprocess_or_redirect("y", "height", "width", "left") @docstring._concatenate_inherited @docstring._snippet_manager def barh(self, *args, **kwargs): """ %(plot.barh)s """ kwargs = _parse_vert(default_orientation="horizontal", **kwargs) return self._apply_bar(*args, **kwargs)
# WARNING: 'labels' and 'colors' no longer passed through `data` (seems like # extremely niche usage... `data` variables should be data-like)
[docs] @inputs._preprocess_or_redirect("x", "explode") @docstring._concatenate_inherited @docstring._snippet_manager def pie(self, x, explode, *, labelpad=None, labeldistance=None, **kwargs): """ %(plot.pie)s """ kw = kwargs.copy() pad = _not_none(labeldistance=labeldistance, labelpad=labelpad, default=1.15) wedge_kw = kw.pop("wedgeprops", None) or {} wedge_kw.update(_pop_props(kw, "patch")) edgefix_kw = _pop_params(kw, self._fix_patch_edges) _, x, kw = self._parse_1d_args( x, autox=False, autoy=False, autoreverse=False, **kw ) kw = self._parse_cycle(x.size, **kw) # Pop legend and colorbar keywords for pie as # they are not used in this function kw.pop("legend_kw", None) kw.pop("colorbar_kw", None) objs = self._call_native( "pie", x, explode=explode, labeldistance=pad, wedgeprops=wedge_kw, **kw, ) objs = tuple(cbook.silent_list(type(seq[0]).__name__, seq) for seq in objs) self._fix_patch_edges(objs[0], **edgefix_kw, **wedge_kw) return objs
@staticmethod def _parse_box_violin(fillcolor, fillalpha, edgecolor, **kw): """ Parse common boxplot and violinplot arguments. """ if isinstance(fillcolor, list): warnings._warn_ultraplot( "Passing lists to fillcolor was deprecated in v0.9. Please use " f"the property cycler with e.g. cycle={fillcolor!r} instead." ) kw["cycle"] = _not_none(cycle=kw.get("cycle", None), fillcolor=fillcolor) fillcolor = None if isinstance(fillalpha, list): warnings._warn_ultraplot( "Passing lists to fillalpha was removed in v0.9. Please specify " "different opacities using the property cycle colors instead." ) fillalpha = fillalpha[0] # too complicated to try to apply this if isinstance(edgecolor, list): warnings._warn_ultraplot( "Passing lists of edgecolors was removed in v0.9. Please call the " "plotting command multiple times with different edge colors instead." ) edgecolor = edgecolor[0] return fillcolor, fillalpha, edgecolor, kw def _apply_boxplot( self, x, y, *, mean=None, means=None, vert=True, fill=None, filled=None, marker=None, markersize=None, **kwargs, ): """ Apply the box plot. """ # Global and fill properties kw = kwargs.copy() kw.update(_pop_props(kw, "patch")) fill = _not_none(fill=fill, filled=filled) means = _not_none(mean=mean, means=means, showmeans=kw.get("showmeans")) linewidth = kw.pop("linewidth", rc["patch.linewidth"]) edgecolor = kw.pop("edgecolor", "black") fillcolor = kw.pop("facecolor", None) fillalpha = kw.pop("alpha", None) fillcolor, fillalpha, edgecolor, kw = self._parse_box_violin( fillcolor, fillalpha, edgecolor, **kw ) if fill is None: fill = fillcolor is not None or fillalpha is not None fill = fill or kw.get("cycle") is not None # Parse non-color properties # NOTE: Output dict keys are plural but we use singular for keyword args props = {} for key in ( "boxes", "whiskers", "caps", "fliers", "medians", "means", "hatches", ): prefix = key.rstrip("es") # singular form props[key] = iprops = _pop_props(kw, "line", prefix=prefix) iprops.setdefault("color", edgecolor) iprops.setdefault("linewidth", linewidth) iprops.setdefault("markeredgecolor", edgecolor) # Parse color properties x, y, kw = self._parse_1d_args( x, y, autoy=False, autoguide=False, vert=vert, **kw ) kw = self._parse_cycle(x.size, **kw) # possibly apply cycle if fill and fillcolor is None: parser = self._get_patches_for_fill fillcolor = [parser.get_next_color() for _ in range(x.size)] else: fillcolor = [fillcolor] * x.size # Plot boxes kw.setdefault("positions", x) if means: kw["showmeans"] = kw["meanline"] = True y = inputs._dist_clean(y) # Add hatch to props as boxplot does not have a hatch but Rectangle does hatch = kw.pop("hatch", None) if hatch is None: hatch = [None for _ in range(x.size)] # TODO(compat) remove this when 3.9 is deprecated # Convert vert boolean to orientation string for newer versions orientation = "vertical" if vert else "horizontal" if version.parse(str(_version_mpl)) >= version.parse("3.10.0"): # For matplotlib 3.10+: # Use the orientation parameters artists = self._call_native("boxplot", y, orientation=orientation, **kw) else: # For older matplotlib versions: # Use vert parameter artists = self._call_native("boxplot", y, vert=vert, **kw) artists = artists or {} # necessary? artists = { key: cbook.silent_list(type(objs[0]).__name__, objs) if objs else objs for key, objs in artists.items() } # Modify artist settings for key, aprops in props.items(): if key not in artists: # possible if not rendered continue objs = artists[key] for i, obj in enumerate(objs): # Update lines used for boxplot components # TODO: Test this thoroughly! iprops = { key: ( value[i // 2 if key in ("caps", "whiskers") else i] if isinstance(value, (list, np.ndarray)) else value ) for key, value in aprops.items() } obj.update(iprops) # "Filled" boxplot by adding patch beneath line path if key == "boxes" and ( fillcolor[i] is not None or fillalpha is not None or hatch[i] is not None ): patch = mpatches.PathPatch( obj.get_path(), linewidth=0.0, facecolor=fillcolor[i], alpha=fillalpha, hatch=hatch[i], ) self.add_artist(patch) # Outlier markers if key == "fliers": if marker is not None: obj.set_marker(marker) if markersize is not None: obj.set_markersize(markersize) return artists
[docs] @docstring._snippet_manager def box(self, *args, **kwargs): """ %(plot.boxplot)s """ return self.boxplot(*args, **kwargs)
[docs] @docstring._snippet_manager def boxh(self, *args, **kwargs): """ %(plot.boxploth)s """ return self.boxploth(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("positions", "y") @docstring._concatenate_inherited @docstring._snippet_manager def boxplot(self, *args, **kwargs): """ %(plot.boxplot)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_boxplot(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("positions", "x") @docstring._snippet_manager def boxploth(self, *args, **kwargs): """ %(plot.boxploth)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_boxplot(*args, **kwargs)
def _apply_violinplot( self, x, y, vert=True, mean=None, means=None, median=None, medians=None, showmeans=None, showmedians=None, showextrema=None, **kwargs, ): """ Apply the violinplot. """ # Parse keyword args kw = kwargs.copy() kw.update(_pop_props(kw, "patch")) kw.setdefault("capsize", 0) # caps are redundant for violin plots means = _not_none(mean=mean, means=means, showmeans=showmeans) medians = _not_none(median=median, medians=medians, showmedians=showmedians) if showextrema: kw["default_barpctiles"] = True if not means and not medians: medians = _not_none(medians, True) linewidth = kw.pop("linewidth", None) edgecolor = kw.pop("edgecolor", "black") fillcolor = kw.pop("facecolor", None) fillalpha = kw.pop("alpha", None) fillcolor, fillalpha, edgecolor, kw = self._parse_box_violin( fillcolor, fillalpha, edgecolor, **kw ) # Parse color properties x, y, kw = self._parse_1d_args( x, y, autoy=False, autoguide=False, vert=vert, **kw ) kw = self._parse_cycle(x.size, **kw) if fillcolor is None: parser = self._get_patches_for_fill fillcolor = [parser.get_next_color() for _ in range(x.size)] else: fillcolor = [fillcolor] * x.size # Plot violins y, kw = inputs._dist_reduce(y, means=means, medians=medians, **kw) *eb, kw = self._add_error_bars( x, y, vert=vert, default_boxstds=True, default_marker=True, **kw ) # noqa: E501 kw.setdefault("positions", x) # coordinates passed as keyword y = _not_none(kw.pop("distribution"), y) # i.e. was reduced y = inputs._dist_clean(y) hatches = None if "hatch" in kw: hatches = kw.pop("hatch", None) if "hatches" in kw: hatches = kw.pop("hatches", None) if hatches is None: hatches = len(y) * [None] elif len(hatches) != len(y): raise ValueError(f"Retrieved {len(hatches)} hatches but need {len(y)}") legend_labels = kw.pop("labels", None) if version.parse(str(_version_mpl)) >= version.parse("3.10.0"): # For matplotlib 3.10+: # Use orientation parameter orientation = "vertical" if vert else "horizontal" artists = self._call_native( "violinplot", y, orientation=orientation, showmeans=False, showmedians=False, showextrema=False, **kw, ) else: # For older matplotlib versions: # Use vert parameter artists = self._call_native( "violinplot", y, vert=vert, # Use the original vert boolean showmeans=False, showmedians=False, showextrema=False, **kw, ) # Modify body settings artists = artists or {} # necessary? bodies = artists.pop("bodies", ()) # should be no other entries if bodies: bodies = cbook.silent_list(type(bodies[0]).__name__, bodies) # Pad body names if less available if legend_labels is None: legend_labels = np.full(len(bodies), None) elif len(legend_labels) < len(bodies): warnings._warn_ultraplot( f"Warning: More bodies ({len(bodies)}) than labels ({len(legend_labels)})" ) for i in range(len(legend_labels), len(bodies)): legend_labels = np.append(legend_labels, None) for i, body in enumerate(bodies): body.set_alpha(1.0) # change default to 1.0 if fillcolor[i] is not None: body.set_facecolor(fillcolor[i]) if fillalpha is not None: body.set_alpha(fillalpha[i]) if edgecolor is not None: body.set_edgecolor(edgecolor) if linewidth is not None: body.set_linewidths(linewidth) if hatches[i] is not None: body.set_hatch(hatches[i]) if legend_labels[i] is not None: body.set_label(legend_labels[i]) return (bodies, *eb) if eb else bodies
[docs] @docstring._snippet_manager def violin(self, *args, **kwargs): """ %(plot.violinplot)s """ # WARNING: This disables use of 'violin' by users but # probably very few people use this anyway. if getattr(self, "_internal_call", None): return super().violin(*args, **kwargs) else: return self.violinplot(*args, **kwargs)
[docs] @docstring._snippet_manager def violinh(self, *args, **kwargs): """ %(plot.violinploth)s """ return self.violinploth(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("positions", "y") @docstring._concatenate_inherited @docstring._snippet_manager def violinplot(self, *args, **kwargs): """ %(plot.violinplot)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_violinplot(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("positions", "x") @docstring._snippet_manager def violinploth(self, *args, **kwargs): """ %(plot.violinploth)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_violinplot(*args, **kwargs)
def _apply_ridgeline( self, data, labels=None, positions=None, height=None, overlap=0.5, kde_kw=None, points=200, hist=False, bins="auto", fill=True, alpha=1.0, linewidth=1.5, edgecolor="black", facecolor=None, cmap=None, vert=True, **kwargs, ): """ Apply ridgeline plot (joyplot). Parameters ---------- data : list of array-like List of distributions to plot as ridges. labels : list of str, optional Labels for each distribution. positions : array-like, optional Y-coordinates for continuous positioning mode. If provided, ridges are anchored to these coordinates along the Y-axis. height : float or array-like, optional Height of each ridge in Y-axis units (continuous mode only). overlap : float, default: 0.5 Amount of overlap between ridges (0-1). Higher values create more overlap. Only used in categorical mode. kde_kw : dict, optional Keyword arguments passed to `scipy.stats.gaussian_kde`. Common parameters: * ``bw_method`` : Bandwidth selection method * ``weights`` : Array of weights for each data point Only used when hist=False. points : int, default: 200 Number of points to evaluate the KDE at. Higher values create smoother curves but take longer to compute. Only used when hist=False. hist : bool, default: False If True, use histograms instead of kernel density estimation. bins : int or sequence or str, default: 'auto' Bin specification for histograms. Passed to numpy.histogram. Only used when hist=True. fill : bool, default: True Whether to fill the area under each curve. alpha : float, default: 1.0 Transparency of filled areas. linewidth : float, default: 1.5 Width of the ridge lines. edgecolor : color, default: 'black' Color of the ridge lines. facecolor : color or list of colors, optional Fill color(s). If None, uses current color cycle or colormap. cmap : str or Colormap, optional Colormap to use for coloring ridges. vert : bool, default: True If True, ridges are horizontal (traditional ridgeline plot). If False, ridges are vertical. **kwargs Additional keyword arguments passed to fill_between or fill_betweenx. Returns ------- list List of PolyCollection objects for each ridge. """ from scipy.stats import gaussian_kde # Validate input if not isinstance(data, (list, tuple)): data = [data] n_ridges = len(data) if labels is None: labels = [f"Ridge {i+1}" for i in range(n_ridges)] elif len(labels) != n_ridges: raise ValueError( f"Number of labels ({len(labels)}) must match number of data series ({n_ridges})" ) # Determine colors if facecolor is None: if cmap is not None: # Use colormap cmap = constructor.Colormap(cmap) colors = [cmap(i / (n_ridges - 1)) for i in range(n_ridges)] else: # Use color cycle parser = self._get_patches_for_fill colors = [parser.get_next_color() for _ in range(n_ridges)] elif isinstance(facecolor, (list, tuple)): colors = list(facecolor) else: colors = [facecolor] * n_ridges # Ensure we have enough colors if len(colors) < n_ridges: colors = colors * (n_ridges // len(colors) + 1) colors = colors[:n_ridges] # Prepare KDE kwargs if kde_kw is None: kde_kw = {} # Calculate KDE or histogram for each distribution ridges = [] for i, dist in enumerate(data): dist = np.asarray(dist).ravel() dist = dist[~np.isnan(dist)] # Remove NaNs if len(dist) < 2: warnings._warn_ultraplot( f"Distribution {i} has less than 2 points, skipping" ) continue if hist: # Use histogram try: counts, bin_edges = np.histogram(dist, bins=bins) # Create x values as bin centers x = (bin_edges[:-1] + bin_edges[1:]) / 2 # Extend to bin edges for proper fill x_extended = np.concatenate([[bin_edges[0]], x, [bin_edges[-1]]]) y_extended = np.concatenate([[0], counts, [0]]) ridges.append((x_extended, y_extended)) except Exception as e: warnings._warn_ultraplot( f"Histogram failed for distribution {i}: {e}, skipping" ) continue else: # Perform KDE try: kde = gaussian_kde(dist, **kde_kw) # Create smooth x values x_min, x_max = dist.min(), dist.max() x_range = x_max - x_min x_margin = x_range * 0.1 # 10% margin x = np.linspace(x_min - x_margin, x_max + x_margin, points) y = kde(x) ridges.append((x, y)) except Exception as e: warnings._warn_ultraplot( f"KDE failed for distribution {i}: {e}, skipping" ) continue if not ridges: raise ValueError("No valid distributions to plot") # Determine positioning mode continuous_mode = positions is not None n_ridges = len(ridges) if continuous_mode: # Continuous (coordinate-based) positioning mode positions = np.asarray(positions) if len(positions) != len(data): raise ValueError( f"Number of positions ({len(positions)}) must match " f"number of data series ({len(data)})" ) # Handle height parameter if height is None: # Auto-determine height from position spacing if len(positions) > 1: min_spacing = np.min(np.diff(np.sort(positions))) height = min_spacing / 2 else: height = 1.0 if np.isscalar(height): heights = np.full(n_ridges, height) else: heights = np.asarray(height) if len(heights) != n_ridges: raise ValueError( f"Number of heights ({len(heights)}) must match " f"number of ridges ({n_ridges})" ) else: # Categorical (evenly-spaced) positioning mode max_height = max(y.max() for x, y in ridges) spacing = max_height * (1 + overlap) artists = [] # Base zorder for ridgelines - use a high value to ensure they're on top base_zorder = kwargs.pop("zorder", 2) n_ridges = len(ridges) for i, (x, y) in enumerate(ridges): if continuous_mode: # Continuous mode: scale to specified height and position at coordinate y_max = y.max() if y_max > 0: y_scaled = (y / y_max) * heights[i] else: y_scaled = y offset = positions[i] y_plot = y_scaled + offset else: # Categorical mode: normalize and space evenly y_normalized = y / max_height offset = i * spacing y_plot = y_normalized + offset # Each ridge gets its own zorder, with fill and outline properly layered # Lower ridges (smaller i, visually in front) get higher z-order # Ridge i: fill at base + (n-i-1)*2, outline at base + (n-i-1)*2 + 1 fill_zorder = base_zorder + (n_ridges - i - 1) * 2 outline_zorder = fill_zorder + 1 if vert: # Traditional horizontal ridges if fill: # Fill without edge poly = self.fill_between( x, offset, y_plot, facecolor=colors[i], alpha=alpha, edgecolor="none", label=labels[i], zorder=fill_zorder, ) # Draw outline on top (excluding baseline) self.plot( x, y_plot, color=edgecolor, linewidth=linewidth, zorder=outline_zorder, ) else: poly = self.plot( x, y_plot, color=colors[i], linewidth=linewidth, label=labels[i], zorder=outline_zorder, )[0] else: # Vertical ridges if fill: # Fill without edge poly = self.fill_betweenx( x, offset, y_plot, facecolor=colors[i], alpha=alpha, edgecolor="none", label=labels[i], zorder=fill_zorder, ) # Draw outline on top (excluding baseline) self.plot( y_plot, x, color=edgecolor, linewidth=linewidth, zorder=outline_zorder, ) else: poly = self.plot( y_plot, x, color=colors[i], linewidth=linewidth, label=labels[i], zorder=outline_zorder, )[0] artists.append(poly) # Set appropriate labels and limits if continuous_mode: # In continuous mode, positions are actual coordinates if vert: # Optionally set ticks at positions if labels and all(labels[: len(ridges)]): self.set_yticks(positions[: len(ridges)]) self.set_yticklabels(labels[: len(ridges)]) else: if labels and all(labels[: len(ridges)]): self.set_xticks(positions[: len(ridges)]) self.set_xticklabels(labels[: len(ridges)]) else: # Categorical mode: set ticks at evenly-spaced positions if vert: self.set_yticks(np.arange(n_ridges) * spacing) self.set_yticklabels(labels[: len(ridges)]) self.set_ylabel("") else: self.set_xticks(np.arange(n_ridges) * spacing) self.set_xticklabels(labels[: len(ridges)]) self.set_xlabel("") return artists
[docs] @inputs._preprocess_or_redirect("data") @docstring._snippet_manager def ridgeline(self, data, **kwargs): """ %(plot.ridgeline)s """ kwargs = _parse_vert(default_vert=True, **kwargs) return self._apply_ridgeline(data, **kwargs)
[docs] @inputs._preprocess_or_redirect("data") @docstring._snippet_manager def ridgelineh(self, data, **kwargs): """ %(plot.ridgelineh)s """ kwargs = _parse_vert(default_vert=False, **kwargs) return self._apply_ridgeline(data, **kwargs)
def _apply_hist( self, xs, bins, *, width=None, rwidth=None, stack=None, stacked=None, fill=None, filled=None, histtype=None, orientation="vertical", **kwargs, ): """ Apply the histogram. """ # NOTE: While Axes.bar() adds labels to the container Axes.hist() only # adds them to the first elements in the container for each column # of the input data. Make sure that legend() will read both containers # and individual items inside those containers. _, xs, kw = self._parse_1d_args( xs, autoreverse=False, orientation=orientation, **kwargs ) fill = _not_none(fill=fill, filled=filled) stack = _not_none(stack=stack, stacked=stacked) if fill is not None: histtype = _not_none(histtype, "stepfilled" if fill else "step") if stack is not None: histtype = _not_none(histtype, "barstacked" if stack else "bar") kw["bins"] = bins kw["label"] = kw.pop("labels", None) # multiple labels are natively supported kw["rwidth"] = _not_none(width=width, rwidth=rwidth) # latter is native kw["histtype"] = histtype = _not_none(histtype, "bar") kw.update(_pop_props(kw, "patch")) edgefix_kw = _pop_params(kw, self._fix_patch_edges) guide_kw = _pop_params(kw, self._update_guide) n = xs.shape[1] if xs.ndim > 1 else 1 kw = self._parse_cycle(n, **kw) obj = self._call_native("hist", xs, orientation=orientation, **kw) if histtype.startswith("bar"): self._fix_patch_edges(obj[2], **edgefix_kw, **kw) # Revert to mpl < 3.3 behavior where silent_list was always returned for # non-bar-type histograms. Because consistency. res = obj[2] if type(res) is list: # 'step' histtype plots res = cbook.silent_list("Polygon", res) obj = (*obj[:2], res) else: for i, sub in enumerate(res): if type(sub) is list: res[i] = cbook.silent_list("Polygon", sub) self._update_guide(res, **guide_kw) return obj
[docs] @inputs._preprocess_or_redirect("x", "bins", keywords="weights") @docstring._concatenate_inherited @docstring._snippet_manager def hist(self, *args, **kwargs): """ %(plot.hist)s """ kwargs = _parse_vert(default_orientation="vertical", **kwargs) return self._apply_hist(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("y", "bins", keywords="weights") @docstring._snippet_manager def histh(self, *args, **kwargs): """ %(plot.histh)s """ kwargs = _parse_vert(default_orientation="horizontal", **kwargs) return self._apply_hist(*args, **kwargs)
[docs] @inputs._preprocess_or_redirect("x", "y", "bins", keywords="weights") @docstring._concatenate_inherited @docstring._snippet_manager def hist2d(self, x, y, bins, **kwargs): """ %(plot.hist2d)s """ # Rely on the pcolormesh() override for this. if bins is not None: kwargs["bins"] = bins return super().hist2d(x, y, autoreverse=False, default_discrete=False, **kwargs)
# WARNING: breaking change from native 'C'
[docs] @inputs._preprocess_or_redirect("x", "y", "weights") @docstring._concatenate_inherited @docstring._snippet_manager def hexbin(self, x, y, weights, **kwargs): """ %(plot.hexbin)s """ # WARNING: Cannot use automatic level generation here until counts are # estimated. Inside _parse_level_vals if no manual levels were provided then # _parse_level_num is skipped and args like levels=10 or locator=5 are ignored kw = kwargs.copy() x, y, kw = self._parse_1d_args(x, y, autoreverse=False, autovalues=True, **kw) kw.update(_pop_props(kw, "collection")) # takes LineCollection props center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( x, y, y, skip_autolev=True, default_discrete=False, center_levels=center_levels, **kw, ) # Change the default behavior for weights/C to compute # the total of the weights, not their average. reduce_C_function = kw.get("reduce_C_function", None) if reduce_C_function is None: kw["reduce_C_function"] = np.sum norm = kw.get("norm", None) if norm is not None and not isinstance(norm, pcolors.DiscreteNorm): norm.vmin = norm.vmax = None # remove nonsense values labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) m = self._call_native("hexbin", x, y, weights, **kw) self._add_auto_labels(m, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._preprocess_or_redirect("x", "y", "z") @docstring._concatenate_inherited @docstring._snippet_manager def contour(self, x, y, z, **kwargs): """ %(plot.contour)s """ x, y, z, kw = self._parse_2d_args(x, y, z, **kwargs) kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( x, y, z, center_levels=center_levels, min_levels=1, plot_lines=True, plot_contours=True, **kw, ) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) label = kw.pop("label", None) m = self._call_native("contour", x, y, z, **kw) m._legend_label = label self._add_auto_labels(m, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._preprocess_or_redirect("x", "y", "z") @docstring._concatenate_inherited @docstring._snippet_manager def contourf(self, x, y, z, **kwargs): """ %(plot.contourf)s """ x, y, z, kw = self._parse_2d_args(x, y, z, **kwargs) kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( x, y, z, center_levels=center_levels, plot_contours=True, **kw ) contour_kw = _pop_kwargs(kw, "edgecolors", "linewidths", "linestyles") edgefix_kw = _pop_params(kw, self._fix_patch_edges) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) label = kw.pop("label", None) m = cm = self._call_native("contourf", x, y, z, **kw) m._legend_label = label self._fix_patch_edges(m, **edgefix_kw, **contour_kw) # no-op if not contour_kw if contour_kw or labels_kw: cm = self._fix_contour_edges("contour", x, y, z, **kw, **contour_kw) self._add_auto_labels(m, cm, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._preprocess_or_redirect("x", "y", "z") @docstring._concatenate_inherited @docstring._snippet_manager def pcolor(self, x, y, z, **kwargs): """ %(plot.pcolor)s """ x, y, z, kw = self._parse_2d_args(x, y, z, edges=True, **kwargs) kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( x, y, z, to_centers=True, center_levels=center_levels, **kw ) edgefix_kw = _pop_params(kw, self._fix_patch_edges) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) with self._keep_grid_bools(): m = self._call_native("pcolor", x, y, z, **kw) self._fix_patch_edges(m, **edgefix_kw, **kw) self._add_auto_labels(m, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._preprocess_or_redirect("x", "y", "z") @docstring._concatenate_inherited @docstring._snippet_manager def pcolormesh(self, x, y, z, **kwargs): """ %(plot.pcolormesh)s """ to_centers = edges = True # For 'nearest' and 'gouraud' shading, Matplotlib's pcolormesh uses the original grid points # rather than interpolated values. Therefore, we set to_centers and edges to False. if kwargs.get("shading", "").lower() in ("nearest", "gouraud"): to_centers = edges = False x, y, z, kw = self._parse_2d_args(x, y, z, edges=edges, **kwargs) kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( x, y, z, to_centers=to_centers, center_levels=center_levels, **kw ) edgefix_kw = _pop_params(kw, self._fix_patch_edges) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) with self._keep_grid_bools(): m = self._call_native("pcolormesh", x, y, z, **kw) self._fix_patch_edges(m, **edgefix_kw, **kw) self._add_auto_labels(m, **labels_kw) # Add center levels to keywords guide_kw.setdefault("colorbar_kw", {})["center_levels"] = center_levels self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._preprocess_or_redirect("x", "y", "z") @docstring._concatenate_inherited @docstring._snippet_manager def pcolorfast(self, x, y, z, **kwargs): """ %(plot.pcolorfast)s """ x, y, z, kw = self._parse_2d_args(x, y, z, edges=True, **kwargs) kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( x, y, z, center_levels=center_levels, to_centers=True, **kw ) edgefix_kw = _pop_params(kw, self._fix_patch_edges) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) with self._keep_grid_bools(): m = self._call_native("pcolorfast", x, y, z, **kw) if not isinstance(m, mimage.AxesImage): # NOTE: PcolorImage is derivative self._fix_patch_edges(m, **edgefix_kw, **kw) self._add_auto_labels(m, **labels_kw) elif edgefix_kw or labels_kw: kw = {**edgefix_kw, **labels_kw} warnings._warn_ultraplot( f"Ignoring unused keyword argument(s): {kw}. These only work with " "QuadMesh, not AxesImage. Consider using pcolor() or pcolormesh()." ) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @docstring._snippet_manager def heatmap(self, *args, aspect=None, **kwargs): """ %(plot.heatmap)s """ obj = self.pcolormesh(*args, default_discrete=False, **kwargs) aspect = _not_none(aspect, rc["image.aspect"]) if self._name != "cartesian": warnings._warn_ultraplot( "The heatmap() command is meant for CartesianAxes " "only. Please use pcolor() or pcolormesh() instead." ) return obj coords = getattr(obj, "_coordinates", None) xlocator = ylocator = None if coords is not None: coords = 0.5 * (coords[1:, ...] + coords[:-1, ...]) coords = 0.5 * (coords[:, 1:, :] + coords[:, :-1, :]) xlocator, ylocator = coords[0, :, 0], coords[:, 0, 1] kw = {"aspect": aspect, "xgrid": False, "ygrid": False} if xlocator is not None and self.xaxis.isDefault_majloc: kw["xlocator"] = xlocator if ylocator is not None and self.yaxis.isDefault_majloc: kw["ylocator"] = ylocator if self.xaxis.isDefault_minloc: kw["xtickminor"] = False if self.yaxis.isDefault_minloc: kw["ytickminor"] = False self.format(**kw) return obj
[docs] @inputs._preprocess_or_redirect("x", "y", "u", "v", ("c", "color", "colors")) @docstring._concatenate_inherited @docstring._snippet_manager def barbs(self, x, y, u, v, c, **kwargs): """ %(plot.barbs)s """ x, y, u, v, kw = self._parse_2d_args( x, y, u, v, allow1d=True, autoguide=False, **kwargs ) # noqa: E501 kw.update(_pop_props(kw, "line")) # applied to barbs c, kw = self._parse_color(x, y, c, **kw) if mcolors.is_color_like(c): kw["barbcolor"], c = c, None a = [x, y, u, v] if c is not None: a.append(c) kw.pop("colorbar_kw", None) # added by _parse_cmap m = self._call_native("barbs", *a, **kw) return m
[docs] @inputs._preprocess_or_redirect("x", "y", "u", "v", ("c", "color", "colors")) @docstring._concatenate_inherited @docstring._snippet_manager def quiver(self, x, y, u, v, c, **kwargs): """ %(plot.quiver)s """ x, y, u, v, kw = self._parse_2d_args( x, y, u, v, allow1d=True, autoguide=False, **kwargs ) # noqa: E501 kw.update(_pop_props(kw, "line")) # applied to arrow outline c, kw = self._parse_color(x, y, c, **kw) color = None # Handle case where c is a singular color if mcolors.is_color_like(c): color, c = c, None if color is not None: kw["color"] = color a = [x, y, u, v] if c is not None: # If U is 1D we are dealing with arrows if len(u.shape) == 1: kw["color"] = c # Otherwise we assume we are populating a field else: a.append(c) kw.pop("colorbar_kw", None) # added by _parse_cmap m = self._call_native("quiver", *a, **kw) return m
[docs] @docstring._snippet_manager def stream(self, *args, **kwargs): """ %(plot.stream)s """ return self.streamplot(*args, **kwargs)
# WARNING: breaking change from native streamplot() fifth positional arg 'density'
[docs] @inputs._preprocess_or_redirect( "x", "y", "u", "v", ("c", "color", "colors"), keywords="start_points" ) @docstring._concatenate_inherited @docstring._snippet_manager def streamplot(self, x, y, u, v, c, **kwargs): """ %(plot.stream)s """ x, y, u, v, kw = self._parse_2d_args(x, y, u, v, **kwargs) kw.update(_pop_props(kw, "line")) # applied to lines c, kw = self._parse_color(x, y, c, **kw) if c is None: # throws an error if color not provided c = pcolors.to_hex(self._get_lines.get_next_color()) kw["color"] = c # always pass this guide_kw = _pop_params(kw, self._update_guide) label = kw.pop("label", None) m = self._call_native("streamplot", x, y, u, v, **kw) m.lines.set_label(label) # the collection label self._update_guide(m.lines, queue_colorbar=False, **guide_kw) # use lines return m
[docs] @inputs._parse_triangulation_with_preprocess("x", "y", "z", keywords=["triangles"]) @docstring._concatenate_inherited @docstring._snippet_manager def tricontour(self, *args, **kwargs): """ %(plot.tricontour)s """ kw = kwargs.copy() triangulation, z, args, kwargs = inputs._parse_triangulation_inputs( *args, **kwargs ) # Update kwargs and handle cmap kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( triangulation.x, triangulation.y, z, min_levels=1, plot_lines=True, plot_contours=True, center_levels=center_levels, **kw, ) # Handle labels and guide parameters labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) # Extract and assign label label = kw.pop("label", None) m = self._call_native("tricontour", triangulation, z, **kw) m._legend_label = label # Add labels and update guide self._add_auto_labels(m, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._parse_triangulation_with_preprocess("x", "y", "z", keywords=["triangles"]) @docstring._concatenate_inherited @docstring._snippet_manager def tricontourf(self, *args, **kwargs): """ %(plot.tricontourf)s """ kw = kwargs.copy() triangulation, z, args, kw = inputs._parse_triangulation_inputs(*args, **kwargs) # Update kwargs and handle contour parameters kw.update(_pop_props(kw, "collection")) contour_kw = _pop_kwargs(kw, "edgecolors", "linewidths", "linestyles") center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( triangulation.x, triangulation.y, z, center_levels=center_levels, plot_contours=True, **kw, ) # Handle patch edges, labels, and guide parameters edgefix_kw = _pop_params(kw, self._fix_patch_edges) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) label = kw.pop("label", None) # Call native tricontourf function with triangulation m = cm = self._call_native("tricontourf", triangulation, z, **kw) m._legend_label = label # Fix edges and add labels self._fix_patch_edges(m, **edgefix_kw, **contour_kw) # No-op if not contour_kw if contour_kw or labels_kw: cm = self._fix_contour_edges( "tricontour", triangulation.x, triangulation.y, z, **kw, **contour_kw ) # Add auto labels and update the guide self._add_auto_labels(m, cm, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
[docs] @inputs._parse_triangulation_with_preprocess("x", "y", "z", keywords=["triangles"]) @docstring._concatenate_inherited @docstring._snippet_manager def tripcolor(self, *args, **kwargs): """ %(plot.tripcolor)s """ kw = kwargs.copy() triangulation, z, args, kw = inputs._parse_triangulation_inputs(*args, **kwargs) # Update kwargs and handle cmap kw.update(_pop_props(kw, "collection")) center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( triangulation.x, triangulation.y, z, center_levels=center_levels, **kw ) # Handle patch edges, labels, and guide parameters edgefix_kw = _pop_params(kw, self._fix_patch_edges) labels_kw = _pop_params(kw, self._add_auto_labels) guide_kw = _pop_params(kw, self._update_guide) # Plot with the native tripcolor method with self._keep_grid_bools(): m = self._call_native("tripcolor", triangulation, z, **kw) # Fix edges and add labels self._fix_patch_edges(m, **edgefix_kw, **kw) self._add_auto_labels(m, **labels_kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
# WARNING: breaking change from native 'X'
[docs] @inputs._preprocess_or_redirect("z") @docstring._concatenate_inherited @docstring._snippet_manager def imshow(self, z, **kwargs): """ %(plot.imshow)s """ kw = kwargs.copy() center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( z, center_levels=center_levels, default_discrete=False, **kw ) guide_kw = _pop_params(kw, self._update_guide) m = self._call_native("imshow", z, **kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
# WARNING: breaking change from native 'Z'
[docs] @inputs._preprocess_or_redirect("z") @docstring._concatenate_inherited @docstring._snippet_manager def matshow(self, z, **kwargs): """ %(plot.matshow)s """ # Rely on imshow() override for this. return super().matshow(z, **kwargs)
# WARNING: breaking change from native 'Z'
[docs] @inputs._preprocess_or_redirect("z") @docstring._concatenate_inherited @docstring._snippet_manager def spy(self, z, **kwargs): """ %(plot.spy)s """ kw = kwargs.copy() kw.update(_pop_props(kw, "line")) # takes valid Line2D properties default_cmap = pcolors.DiscreteColormap(["w", "k"], "_no_name") center_levels = kw.pop("center_levels", None) kw = self._parse_cmap( z, center_levels=center_levels, default_cmap=default_cmap, **kw ) guide_kw = _pop_params(kw, self._update_guide) m = self._call_native("spy", z, **kw) self._update_guide(m, queue_colorbar=False, **guide_kw) return m
def _iter_arg_pairs(self, *args): """ Iterate over ``[x1,] y1, [fmt1,] [x2,] y2, [fmt2,] ...`` input. """ # NOTE: This is copied from _process_plot_var_args.__call__ to avoid relying # on private API. We emulate this input style with successive plot() calls. args = list(args) while args: # this permits empty input x, y, *args = args if args and isinstance(args[0], str): # format string detected! fmt, *args = args elif isinstance(y, str): # omits some of matplotlib's rigor but whatevs x, y, fmt = None, x, y else: fmt = None yield x, y, fmt def _iter_arg_cols(self, *args, label=None, labels=None, values=None, **kwargs): """ Iterate over columns of positional arguments. """ is_array = lambda data: hasattr(data, "ndim") and hasattr(data, "shape") # Determine the number of columns n = max(1 if not is_array(a) or a.ndim < 2 else a.shape[-1] for a in args) # Handle labels labels = _not_none(label=label, values=values, labels=labels) if not np.iterable(labels) or isinstance(labels, str): labels = n * [labels] if len(labels) != n: raise ValueError(f"Array has {n} columns but got {len(labels)} labels.") if labels is not None: labels = [ str(_not_none(label, "")) for label in inputs._to_numpy_array(labels) ] else: labels = n * [None] # Yield successive columns for i in range(n): kw = kwargs.copy() kw["label"] = labels[i] or None a = tuple(a if not is_array(a) or a.ndim < 2 else a[..., i] for a in args) yield (i, n, *a, kw) # Related parsing functions for warnings _level_parsers = (_parse_level_vals, _parse_level_num, _parse_level_lim) # Rename the shorthands boxes = warnings._rename_objs("0.8.0", boxes=box) violins = warnings._rename_objs("0.8.0", violins=violin)