Cartesian axes
This section documents features used for modifying Cartesian x and y axes, including axis scales, tick locations, tick label formatting, and several twin and dual axes commands.
Tick locations
Matplotlib tick locators
select sensible tick locations based on the axis data limits. In UltraPlot, you can
change the tick locator using the format() keyword
arguments xlocator, ylocator, xminorlocator, and yminorlocator (or their
aliases, xticks, yticks, xminorticks, and yminorticks). This is powered by
the Locator constructor function.
You can use these keyword arguments to apply built-in matplotlib
Locators by their “registered” names
(e.g., xlocator='log'), to draw ticks every N data values with
MultipleLocator (e.g., xlocator=2), or to tick the
specific locations in a list using FixedLocator (just
like set_xticks() and set_yticks()).
If you want to work with the locator classes directly, they are available in the
top-level namespace (e.g., xlocator=uplt.MultipleLocator(...) is allowed).
To generate lists of tick locations, we recommend using UltraPlot’s
arange() function – it’s basically an endpoint-inclusive
version of arange(), which is usually what you’ll want in this context.
[1]:
import ultraplot as uplt
import numpy as np
state = np.random.RandomState(51423)
uplt.rc.update(
metawidth=1,
fontsize=10,
metacolor="dark blue",
suptitlecolor="dark blue",
titleloc="upper center",
titlecolor="dark blue",
titleborder=False,
axesfacecolor=uplt.scale_luminance("powderblue", 1.15),
)
fig = uplt.figure(share=False, refwidth=5, refaspect=(8, 1))
fig.format(suptitle="Tick locators demo")
# Step size for tick locations
ax = fig.subplot(711, title="MultipleLocator")
ax.format(xlim=(0, 200), xminorlocator=10, xlocator=30)
# Specific list of locations
ax = fig.subplot(712, title="FixedLocator")
ax.format(xlim=(0, 10), xminorlocator=0.1, xlocator=[0, 0.3, 0.8, 1.6, 4.4, 8, 8.8])
# Ticks at numpy.linspace(xmin, xmax, N)
ax = fig.subplot(713, title="LinearLocator")
ax.format(xlim=(0, 10), xlocator=("linear", 21))
# Logarithmic locator, used automatically for log scale plots
ax = fig.subplot(714, title="LogLocator")
ax.format(xlim=(1, 100), xlocator="log", xminorlocator="logminor")
# Maximum number of ticks, but at "nice" locations
ax = fig.subplot(715, title="MaxNLocator")
ax.format(xlim=(1, 7), xlocator=("maxn", 11))
# Hide all ticks
ax = fig.subplot(716, title="NullLocator")
ax.format(xlim=(-10, 10), xlocator="null")
# Tick locations that cleanly divide 60 minute/60 second intervals
ax = fig.subplot(717, title="Degree-Minute-Second Locator (requires cartopy)")
ax.format(xlim=(0, 2), xlocator="dms", xformatter="dms")
uplt.rc.reset()
/home/docs/checkouts/readthedocs.org/user_builds/ultraplot/conda/465/lib/python3.13/site-packages/ultraplot/axes/base.py:3457: UserWarning: Glyph 8242 (\N{PRIME}) missing from font(s) TeX Gyre Heros.
self._tight_bbox = super().get_tightbbox(renderer, *args, **kwargs)
/home/docs/checkouts/readthedocs.org/user_builds/ultraplot/conda/465/lib/python3.13/site-packages/ultraplot/axes/base.py:3445: UserWarning: Glyph 8242 (\N{PRIME}) missing from font(s) TeX Gyre Heros.
super().draw(renderer, *args, **kwargs)
Tick formatting
Matplotlib tick formatters
convert floating point numbers to nicely-formatted tick labels. In UltraPlot, you can
change the tick formatter using the format() keyword
arguments xformatter and yformatter (or their aliases, xticklabels and
yticklabels). This is powered by the Formatter
constructor function.
You can use these keyword arguments to apply built-in matplotlib
Formatters by their “registered” names
(e.g., xformatter='log'), to apply a %-style format directive with
FormatStrFormatter (e.g., xformatter='%.0f'), or
to apply custom tick labels with FixedFormatter (just
like set_xticklabels()). You can also apply one of UltraPlot’s
new tick formatters – for example, xformatter='deglat' to label ticks
as geographic latitude coordinates, xformatter='pi' to label ticks as
fractions of \(\pi\), or xformatter='sci' to label ticks with
scientific notation. If you want to work with the formatter classes
directly, they are available in the top-level namespace
(e.g., xformatter=uplt.SciFormatter(...) is allowed).
UltraPlot also changes the default tick formatter to
AutoFormatter. This class trims trailing zeros by
default, can optionally omit or wrap tick values within particular
number ranges, and can add prefixes and suffixes to each label. See
AutoFormatter for details. To disable the trailing
zero-trimming feature, set rc['formatter.zerotrim'] to False.
[2]:
import ultraplot as uplt
uplt.rc.fontsize = 11
uplt.rc.metawidth = 1.5
uplt.rc.gridwidth = 1
# Create the figure
fig, axs = uplt.subplots(ncols=2, nrows=2, refwidth=1.5, share=False)
axs.format(
ytickloc="both",
yticklabelloc="both",
titlepad="0.5em",
suptitle="Default formatters demo",
)
# Formatter comparison
locator = [0, 0.25, 0.5, 0.75, 1]
axs[0].format(xformatter="scalar", yformatter="scalar", title="Matplotlib formatter")
axs[1].format(title="UltraPlot formatter")
axs[:2].format(xlocator=locator, ylocator=locator)
# Limiting the tick range
axs[2].format(
title="Omitting tick labels",
ticklen=5,
xlim=(0, 5),
ylim=(0, 5),
xtickrange=(0, 2),
ytickrange=(0, 2),
xlocator=1,
ylocator=1,
)
# Setting the wrap range
axs[3].format(
title="Wrapping the tick range",
ticklen=5,
xlim=(0, 7),
ylim=(0, 6),
xwraprange=(0, 5),
ywraprange=(0, 3),
xlocator=1,
ylocator=1,
)
uplt.rc.reset()
[3]:
import ultraplot as uplt
import numpy as np
uplt.rc.update(
metawidth=1.2,
fontsize=10,
axesfacecolor="gray0",
figurefacecolor="gray2",
metacolor="gray8",
gridcolor="gray8",
titlecolor="gray8",
suptitlecolor="gray8",
titleloc="upper center",
titleborder=False,
)
fig = uplt.figure(refwidth=5, refaspect=(8, 1), share=False)
# Scientific notation
ax = fig.subplot(911, title="SciFormatter")
ax.format(xlim=(0, 1e20), xformatter="sci")
# N significant figures for ticks at specific values
ax = fig.subplot(912, title="SigFigFormatter")
ax.format(
xlim=(0, 20),
xlocator=(0.0034, 3.233, 9.2, 15.2344, 7.2343, 19.58),
xformatter=("sigfig", 2), # 2 significant digits
)
# Fraction formatters
ax = fig.subplot(913, title="FracFormatter")
ax.format(xlim=(0, 3 * np.pi), xlocator=np.pi / 4, xformatter="pi")
ax = fig.subplot(914, title="FracFormatter")
ax.format(xlim=(0, 2 * np.e), xlocator=np.e / 2, xticklabels="e")
# Geographic formatters
ax = fig.subplot(915, title="Latitude Formatter")
ax.format(xlim=(-90, 90), xlocator=30, xformatter="deglat")
ax = fig.subplot(916, title="Longitude Formatter")
ax.format(xlim=(0, 360), xlocator=60, xformatter="deglon")
# User input labels
ax = fig.subplot(917, title="FixedFormatter")
ax.format(
xlim=(0, 5),
xlocator=np.arange(5),
xticklabels=["a", "b", "c", "d", "e"],
)
# Custom style labels
ax = fig.subplot(918, title="FormatStrFormatter")
ax.format(xlim=(0, 0.001), xlocator=0.0001, xformatter="%.E")
ax = fig.subplot(919, title="StrMethodFormatter")
ax.format(xlim=(0, 100), xtickminor=False, xlocator=20, xformatter="{x:.1f}")
fig.format(ylocator="null", suptitle="Tick formatters demo")
uplt.rc.reset()
Datetime ticks
The above examples all assumed typical “numeric” axes. However
format() can also modify the tick locations and tick
labels for “datetime” axes. To draw ticks on each occurence of some particular time
unit, use a unit string (e.g., xlocator='month'). To draw ticks every N time
units, use a (unit, N) tuple (e.g., xlocator=('day', 5)). For % style formatting
of datetime tick labels with strftime(), you can use a string
containing '%' (e.g. xformatter='%Y-%m-%d'). By default, x axis datetime
axis labels are rotated 90 degrees, like in pandas. This can be disabled by
passing xrotation=0 to format() or by setting
rc['formatter.timerotation'] to 0. See Locator
and Formatter for details.
[4]:
import ultraplot as uplt
import numpy as np
uplt.rc.update(
metawidth=1.2,
fontsize=10,
ticklenratio=0.7,
figurefacecolor="w",
axesfacecolor="pastel blue",
titleloc="upper center",
titleborder=False,
)
fig, axs = uplt.subplots(nrows=5, refwidth=6, refaspect=(8, 1), share=False)
# Default date locator
# This is enabled if you plot datetime data or set datetime limits
ax = axs[0]
ax.format(
xlim=(np.datetime64("2000-01-01"), np.datetime64("2001-01-02")),
title="Auto date locator and formatter",
)
# Concise date formatter introduced in matplotlib 3.1
ax = axs[1]
ax.format(
xlim=(np.datetime64("2000-01-01"), np.datetime64("2001-01-01")),
xformatter="concise",
title="Concise date formatter",
)
# Minor ticks every year, major every 10 years
ax = axs[2]
ax.format(
xlim=(np.datetime64("2000-01-01"), np.datetime64("2050-01-01")),
xlocator=("year", 10),
xformatter="'%y",
title="Ticks every N units",
)
# Minor ticks every 10 minutes, major every 2 minutes
ax = axs[3]
ax.format(
xlim=(np.datetime64("2000-01-01T00:00:00"), np.datetime64("2000-01-01T12:00:00")),
xlocator=("hour", range(0, 24, 2)),
xminorlocator=("minute", range(0, 60, 10)),
xformatter="T%H:%M:%S",
title="Ticks at specific intervals",
)
# Month and year labels, with default tick label rotation
ax = axs[4]
ax.format(
xlim=(np.datetime64("2000-01-01"), np.datetime64("2008-01-01")),
xlocator="year",
xminorlocator="month", # minor ticks every month
xformatter="%b %Y",
title="Ticks with default rotation",
)
axs[:4].format(xrotation=0) # no rotation for the first four examples
fig.format(ylocator="null", suptitle="Datetime locators and formatters demo")
uplt.rc.reset()
Axis positions
The locations of axis spines,
tick marks, tick labels, and axis labels can be controlled with
ultraplot.axes.CartesianAxes.format() keyword arguments like xspineloc
(shorthand xloc), xtickloc, xticklabelloc, and xlabelloc. Valid
locations include 'left', 'right', 'top', 'bottom', 'neither',
'none', or 'both'. Spine locations can also be set to a valid
set_position() value, e.g. 'zero' or
('axes', 1.5). The top or right spine is used when the coordinate is
more than halfway across the axes. This is often convenient when passing
e.g. loc to “alternate” axes commands. These keywords
provide the functionality of matplotlib’s tick_left(),
tick_right(), tick_top(), and
tick_bottom(), and set_position(),
but with additional flexibility.
[5]:
import ultraplot as uplt
uplt.rc.update(
metawidth=1.2,
fontsize=10,
gridcolor="coral",
axesedgecolor="deep orange",
figurefacecolor="white",
)
fig = uplt.figure(share=False, refwidth=2, suptitle="Axis locations demo")
# Spine location demonstration
ax = fig.subplot(121, title="Various locations")
ax.format(xloc="top", xlabel="original axis")
ax.twiny(xloc="bottom", xcolor="black", xlabel="locked twin")
ax.twiny(xloc=("axes", 1.25), xcolor="black", xlabel="offset twin")
ax.twiny(xloc=("axes", -0.25), xcolor="black", xlabel="offset twin")
ax.format(ytickloc="both", yticklabelloc="both")
ax.format(ylabel="labels on both sides")
# Other locations locations
ax = fig.subplot(122, title="Zero-centered spines", titlepad="1em")
ax.format(xlim=(-10, 10), ylim=(-3, 3), yticks=1)
ax.format(xloc="zero", yloc="zero")
uplt.rc.reset()
Axis scales
“Axis scales” like 'linear' and 'log' control the x and y axis
coordinate system. To change the axis scale, pass e.g. xscale='log' or
yscale='log' to format(). This is powered by the
Scale constructor function.
UltraPlot makes several changes to the axis scale API:
The
AutoFormatterformatter is now used for all axis scales by default, including'log'and'symlog'. Matplotlib’s behavior can be restored by passing e.g.xformatter='log'oryformatter='log'toformat().To make its behavior consistent with
LocatorandFormatter, theScaleconstructor function returns instances ofScaleBase, andset_xscale()andset_yscale()now accept these class instances in addition to “registered” names like'log'.While matplotlib axis scales must be instantiated with an
Axisinstance (for backwards compatibility reasons), UltraPlot axis scales can be instantiated without the axis instance (e.g.,uplt.LogScale()instead ofuplt.LogScale(ax.xaxis)).The default subs for the
'symlog'axis scale is nownp.arange(1, 10), and the default linthresh is now1. Also the'log'and'symlog'axis scales now accept the keywords base, linthresh, linscale, and subs rather than keywords with trailingxory.
UltraPlot also includes a few new axis scales. The 'cutoff' scale
CutoffScale is useful when the statistical distribution
of your data is very unusual. The 'sine' scale SineLatitudeScale
scales the axis with a sine function (resulting in an area-weighted spherical latitude
coordinate) and the 'mercator' scale MercatorLatitudeScale
scales the axis with the Mercator projection latitude coordinate. The
'inverse' scale InverseScale can be useful when
working with spectral data, especially with “dual” unit axes.
If you want to work with the axis scale classes directly, they are available
in the top-level namespace (e.g., xscale=uplt.CutoffScale(...) is allowed).
[6]:
import ultraplot as uplt
import numpy as np
N = 200
lw = 3
uplt.rc.update({"meta.width": 1, "label.weight": "bold", "tick.labelweight": "bold"})
fig = uplt.figure(refwidth=1.8, share=False)
# Linear and log scales
ax1 = fig.subplot(221)
ax1.format(yscale="linear", ylabel="linear scale")
ax2 = fig.subplot(222)
ax2.format(ylim=(1e-3, 1e3), yscale="log", ylabel="log scale")
for ax in (ax1, ax2):
ax.plot(np.linspace(0, 1, N), np.linspace(0, 1000, N), lw=lw)
# Symlog scale
ax = fig.subplot(223)
ax.format(yscale="symlog", ylabel="symlog scale")
ax.plot(np.linspace(0, 1, N), np.linspace(-1000, 1000, N), lw=lw)
# Logit scale
ax = fig.subplot(224)
ax.format(yscale="logit", ylabel="logit scale")
ax.plot(np.linspace(0, 1, N), np.linspace(0.01, 0.99, N), lw=lw)
fig.format(suptitle="Axis scales demo", ytickminor=True)
uplt.rc.reset()
[7]:
import ultraplot as uplt
import numpy as np
# Create figure
x = np.linspace(0, 4 * np.pi, 100)
dy = np.linspace(-1, 1, 5)
ys = (np.sin(x), np.cos(x))
state = np.random.RandomState(51423)
data = state.rand(len(dy) - 1, len(x) - 1)
colors = ("coral", "sky blue")
cmap = uplt.Colormap("grays", right=0.8)
fig, axs = uplt.subplots(nrows=4, refaspect=(5, 1), figwidth=5.5, sharex=False)
# Loop through various cutoff scale options
titles = ("Zoom out of left", "Zoom into left", "Discrete jump", "Fast jump")
args = (
(np.pi, 3), # speed up
(3 * np.pi, 1 / 3), # slow down
(np.pi, np.inf, 3 * np.pi), # discrete jump
(np.pi, 5, 3 * np.pi), # fast jump
)
locators = (
np.pi / 3,
np.pi / 3,
np.pi * np.append(np.linspace(0, 1, 4), np.linspace(3, 4, 4)),
np.pi * np.append(np.linspace(0, 1, 4), np.linspace(3, 4, 4)),
)
for ax, iargs, title, locator in zip(axs, args, titles, locators):
ax.pcolormesh(x, dy, data, cmap=cmap)
for y, color in zip(ys, colors):
ax.plot(x, y, lw=4, color=color)
ax.format(
# xscale=("cutoff", *iargs),
xlim=(0, 4 * np.pi),
xlocator=locator,
xformatter="pi",
xtickminor=False,
ygrid=False,
ylabel="wave amplitude",
title=title,
suptitle="Cutoff axis scales demo",
)
[8]:
import ultraplot as uplt
import numpy as np
# Create figure
n = 30
state = np.random.RandomState(51423)
data = state.rand(n - 1, n - 1)
colors = ("coral", "sky blue")
cmap = uplt.Colormap("grays", right=0.8)
gs = uplt.GridSpec(nrows=2, ncols=2)
fig = uplt.figure(refwidth=2.3, share=False)
fig.format(grid=False, suptitle="Other axis scales demo")
# Geographic scales
x = np.linspace(-180, 180, n)
y = np.linspace(-85, 85, n)
for i, scale in enumerate(("sine", "mercator")):
ax = fig.subplot(gs[i, 0])
ax.plot(x, y, "-", color=colors[i], lw=4)
ax.pcolormesh(x, y, data, cmap="grays", cmap_kw={"right": 0.8})
ax.format(
yscale=scale,
title=scale.title() + " scale",
ylim=(-85, 85),
ylocator=20,
yformatter="deg",
)
# Exponential scale
n = 50
x = np.linspace(0, 1, n)
y = 3 * np.linspace(0, 1, n)
data = state.rand(len(y) - 1, len(x) - 1)
ax = fig.subplot(gs[0, 1])
title = "Exponential $e^x$ scale"
ax.pcolormesh(x, y, data, cmap="grays", cmap_kw={"right": 0.8})
ax.plot(x, y, lw=4, color=colors[0])
ax.format(ymin=0.05, yscale=("exp", np.e), title=title)
# Power scale
ax = fig.subplot(gs[1, 1])
title = "Power $x^{0.5}$ scale"
ax.pcolormesh(x, y, data, cmap="grays", cmap_kw={"right": 0.8})
ax.plot(x, y, lw=4, color=colors[1])
ax.format(ymin=0.05, yscale=("power", 0.5), title=title)
Alternate axes
The Axes class includes twinx()
and twiny() commands for drawing “twin” x and
y axes in the same subplot. UltraPlot expands on these commands and adds
the arguably more intuitive altx() and
alty() options. Here altx()
is equivalent to twiny() (makes an alternate x
axes and an identical twin y axes) and alty()
is equivalent to twinx() (makes an alternate y
axes and an identical twin x axes). The UltraPlot versions can be quickly
formatted by passing ultraplot.axes.CartesianAxes.format() keyword arguments
to the commands (e.g., ax.alty(ycolor='red') or, since the y prefix in
this context is redundant, just ax.alty(color='red')). They also enforce
sensible default locations for the spines, ticks, and labels, and disable
the twin axes background patch and gridlines by default.
Note
Unlike matplotlib, UltraPlot adds alternate axes as children of the original axes. This helps simplify the tight layout algorithm but means that the drawing order is controlled by the difference between the zorders of the alternate axes and the content inside the original axes rather than the zorder of the original axes itself (see this issue page for details).
[9]:
import ultraplot as uplt
import numpy as np
state = np.random.RandomState(51423)
c0 = "gray5"
c1 = "red8"
c2 = "blue8"
N, M = 50, 10
# Alternate y axis
data = state.rand(M) + (state.rand(N, M) - 0.48).cumsum(axis=0)
altdata = 5 * (state.rand(N) - 0.45).cumsum(axis=0)
fig = uplt.figure(share=False)
ax = fig.subplot(121, title="Alternate y twin x")
ax.line(data, color=c0, ls="--")
ox = ax.alty(color=c2, label="alternate ylabel", linewidth=1)
ox.line(altdata, color=c2)
# Alternate x axis
data = state.rand(M) + (state.rand(N, M) - 0.48).cumsum(axis=0)
altdata = 5 * (state.rand(N) - 0.45).cumsum(axis=0)
ax = fig.subplot(122, title="Alternate x twin y")
ax.linex(data, color=c0, ls="--")
ox = ax.altx(color=c1, label="alternate xlabel", linewidth=1)
ox.linex(altdata, color=c1)
fig.format(xlabel="xlabel", ylabel="ylabel", suptitle="Alternate axes demo")
Dual unit axes
The dualx() and
dualy() methods can be used to draw duplicate x and
y axes meant to represent alternate units in the same coordinate range as the
“parent” axis. This feature is powered by the FuncScale class.
dualx() and dualy() accept
the same axis formatting keyword arguments as altx()
and alty(). The alternate units are specified with
either of the following three positional arguments:
A single linear forward function.
A 2-tuple of arbitrary forward and inverse functions.
An axis scale name or class instance.
In the third case, the axis scale transforms are used for the forward and
inverse functions, and the default axis scale locators and formatters are used
for the default dual axis locators and formatters. In the below examples,
we generate dual axes with each of these three methods. Note that the
“parent” axis scale is arbitrary – in the first example, we create
a dualx() axis for a symlog-scaled axis.
[10]:
import ultraplot as uplt
uplt.rc.update({"grid.alpha": 0.4, "meta.width": 1, "grid.linewidth": 1})
c1 = uplt.scale_luminance("cerulean", 0.5)
c2 = uplt.scale_luminance("red", 0.5)
fig = uplt.figure(refaspect=2.2, refwidth=3, share=False)
axs = fig.subplots(
[[1, 1, 2, 2], [0, 3, 3, 0]],
suptitle="Duplicate axes with simple transformations",
ylocator=[],
yformatter=[],
xcolor=c1,
gridcolor=c1,
)
# Meters and kilometers
ax = axs[0]
ax.format(xlim=(0, 5000), xlabel="meters")
ax.dualx(lambda x: x * 1e-3, label="kilometers", grid=True, color=c2, gridcolor=c2)
# Kelvin and Celsius
ax = axs[1]
ax.format(xlim=(200, 300), xlabel="temperature (K)")
ax.dualx(
lambda x: x - 273.15,
label="temperature (\N{DEGREE SIGN}C)",
grid=True,
color=c2,
gridcolor=c2,
)
# With symlog parent
ax = axs[2]
ax.format(xlim=(-100, 100), xscale="symlog", xlabel="MegaJoules")
ax.dualx(
lambda x: x * 1e6,
label="Joules",
formatter="log",
grid=True,
color=c2,
gridcolor=c2,
)
uplt.rc.reset()
[11]:
import ultraplot as uplt
uplt.rc.update({"grid.alpha": 0.4, "meta.width": 1, "grid.linewidth": 1})
c1 = uplt.scale_luminance("cerulean", 0.5)
c2 = uplt.scale_luminance("red", 0.5)
fig = uplt.figure(
share=False,
refaspect=0.4,
refwidth=1.8,
suptitle="Duplicate axes with pressure and height",
)
# Pressure as the linear scale, height on opposite axis (scale height 7km)
ax = fig.subplot(121)
ax.format(
xformatter="null",
ylabel="pressure (hPa)",
ylim=(1000, 10),
xlocator=[],
ycolor=c1,
gridcolor=c1,
)
ax.dualy("height", label="height (km)", ticks=2.5, color=c2, gridcolor=c2, grid=True)
# Height as the linear scale, pressure on opposite axis (scale height 7km)
ax = fig.subplot(122)
ax.format(
xformatter="null",
ylabel="height (km)",
ylim=(0, 20),
xlocator="null",
grid=True,
gridcolor=c2,
ycolor=c2,
)
ax.dualy(
"pressure", label="pressure (hPa)", locator=100, color=c1, gridcolor=c1, grid=True
)
uplt.rc.reset()
[12]:
import ultraplot as uplt
import numpy as np
uplt.rc.margin = 0
c1 = uplt.scale_luminance("cerulean", 0.5)
c2 = uplt.scale_luminance("red", 0.5)
fig, ax = uplt.subplots(refaspect=(3, 1), figwidth=6)
# Sample data
cutoff = 1 / 5
x = np.linspace(0.01, 0.5, 1000) # in wavenumber days
response = (np.tanh(-((x - cutoff) / 0.03)) + 1) / 2 # response func
ax.axvline(cutoff, lw=2, ls="-", color=c2)
ax.fill_between([cutoff - 0.03, cutoff + 0.03], 0, 1, color=c2, alpha=0.3)
ax.plot(x, response, color=c1, lw=2)
# Add inverse scale to top
ax.format(
title="Imaginary response function",
suptitle="Duplicate axes with wavenumber and period",
xlabel="wavenumber (days$^{-1}$)",
ylabel="response",
grid=False,
)
ax = ax.dualx(
"inverse", locator="log", locator_kw={"subs": (1, 2, 5)}, label="period (days)"
)
uplt.rc.reset()